
Change frequency of each file
Lines of code as a simple measure of code complexity

Complicated code that you have to work with often

Prioritize Technical Debt with Hotspots

Time

C
o

m
p

le
xi

ty

SOFTWARE DESIGN X-RAYS
Fix Technical Debt With Behavioral Code Analysis

Identify Code with High Interest Rates

Complexity : indentation-based complexity
Language agnostic

Evaluate Hotspots
with Complexity Trends

Change coupling - 2 (or more) files change

Coupling in Time

Refactor Congested Code with the Splinter Pattern
Ensure tests cover the splinter candidate
Identify the behaviors inside your hotspot
Refactor for proximity
Extract a new module for the behavior with the most
development activity
Delegate to the new module
Perform regression tests
Select the next behavior to refactor and start over at 4

1.
2.
3.
4.

5.
6.
7.

Divide and Conquer with Architectural Hotspots

"The more often something is changed the more important it is that the corresponding code is of high quality so all
those changes are simple and low risk"

Beyond Conway’s Law

Use Social Data
Guide On and Off-boarding

Explain the need for refactorings
Communicate technical trade-offs

Technical Debt

by Adam Tornhill

Apply at all levels (Micro and Macro)
Interest Rate Is a Function of Time

Bad Code is Technical Debt if you have to
PAY INTEREST ON IT

Code complexity

Change Frequency

Hotspot

Inspect
Possibly refactor

Prioritized list of function to :

X-Ray analysis

"Change coupling can help us design better software as we uncover expensive change patterns in our code"

- A Heuristic for the Concept of Surprise

Invisible in the code itself
Mine it from code’s history and evolution

Is and Isn’t Temporal Coupling
(ex : Unit Tests)

Neither good nor bad
all depends on context

TogetherOver Time

"Parallel Development Is at Conflict with Refactoring"

Along its responsibilities
Maintaining the original API for a transient period

Break a hotspot into smaller parts How to ?

Organize our code by its age
Turn stable packages into libraries
Move and refactor code we fail to stabilize

Promotes long-term memory models of code
Less cognitive load : less active code
Prioritizes test suites to shorten lead times

Stabilize Code by Age

Identify your architectural boundaries :
Often based on the folder structure of the codebase

Identify the subsystems with the most development effort
Visualize the complexity trend of a whole architectural component

Hotspot analysis on an architectural level :

Analyze the files in each architectural hotspot

"Always remember that just because some code is a hotspot, that doesn’t necessarily mean it’s a problem."

Each time you accept a risk, the deviations become the new normal
Complexity trends as WHISTLEBLOWERS

Fight the Normalization of Deviance

Demonstrate importance of this code
Support new features and innovations

% of commits involving top hotspots
Code gets worse over time
Which will slow us down

Show complexity trends
Add people side to the presentation

Coordination bottlenecks

Communicate with Nontechnical Managers - Data buys trust

Quality Suffers with Parallel Development
Increases risk of defects with the number of developers

Coordination needs
Number of authors behind each component

Module 1 : Many minor contributors
Higher risk for defectsModule 1 Module 2

30% 90%

"Ranks all the modules in our codebase based on how diffused the development effort is"

Rank Code by Diffusion

How many different authors have contributed
How the work is distributed among them

Calculate a fractal value

0 : Single author
1 : the more contributors there are

1 Color per Author

Module 2 : 1 main developer
Reduced risks

Use Fractal Values to

Prioritize code reviews
Done right = a proven defect-removal

Focus tests
Identify the areas to focus extra tests

Replan suggested features
If high developer congestion

Redesign for increased parallelism
Candidate for splinter refactorings ?

Introduce areas of responsibility
introduce teams aligned with the structure of the code

Fight motivation losses in Teams

Evaluation
Someone else cares about
your contribution

Knowledge Map

Small GroupsLead by example
Model the behaviors you
want to see in others

Recognize contributions
Present knowledge maps

Visibility Identify the Experts
Find out who to communicate with

Main Author / Module

Measure Future Knowledge Loss

React to Knowledge Loss
Focus to maintain knowledge

Biases and Workarounds for Behavioral Code Analysis

Data
Minimum amount of data

Incorrect author info
Need a minimum amount of data

Copy-paste repositories
Fails to migrate its history

Misused squash commits
When applied to work committed
by several individuals

by Yoan THIRION @yot88#sharingiscaringDiscover it in action on codescene.com

https://www.linkedin.com/in/adam-tornhill-71759b48/
https://www.linkedin.com/in/yoanthirion/
https://twitter.com/yot88
https://www.linkedin.com/in/yoanthirion/
https://codescene.com/

