

Visual Collaboration Tools
for teams building software

João Rosa, Kenny Baas-Schwegler, Nick Tune, Mathias Verraes,
Stefan Hofer, Henning Schwentner, Cédric Pontet, Trond Hjorteland,
Pim Smeets, Krisztina Hirth, Zsofia Herendi, Julius Gamanyi, Paul
de Raaij, Michael Plöd, Dawn Ahukanna, Gayathri Thiyagarajan,
Steve Pereira, Devon Burriss, Nancy Beers, Rich Allen and Matthew
Skelton

This book is for sale at http://leanpub.com/visualcollaborationtools

This version was published on 2022-11-03

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

http://leanpub.com/visualcollaborationtools
https://leanpub.com/
https://leanpub.com/manifesto
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-sa/4.0/deed.en_US

Contents

Introduction . 1

A word about teams . 2

Facilitation . 3
Campfires instead of meetings . 3
Facilitator as magician . 3

Prepare and hold a Visual Meeting . 7
Phase 1: Preparations for the session . 7
Phase 2: Lighting the campfire . 9
Phase 3 and 4: Visual collaboration towards the climax . 11
Phase 5: Wrapping-up and extinguishing the campfire . 12
Phase 6: Retrospective . 12

Tips and trick for working remote . 13
Six Trumps: The Brain Science That Makes Training Stick . 13

Visual Collaboration Tools . 15
Assumptions Mapping . 15
Bounded Context Canvas . 27
Business Capability Modelling . 30
Business Model Canvas . 37
Context Mapping . 40
Decision Log . 50
Domain Quiz . 53
Domain Storytelling . 56
EventStorming . 67
Example Mapping . 100
Impact Mapping . 105
Independent Service Heuristics . 109
Interactions Mapping . 116
Mikado Method . 121
Quality Storming . 124
Responsibility Mapping . 145

CONTENTS

User Needs Mapping . 148
User Story Mapping . 155
The Wall of Technical Debt . 164
Wardley Maps . 169

Field Stories for a tool . 183
An Impact Mapping Workshop to Make Out The Right Decision Between Hundred

Possibilities . 183
Improving your Organizational Continuous Delivery capabilities with EventStorming . . 186
Gathering quality feedback at #play14 with EventStorming 194
Building an Event Driven Data Capture Platform . 198
Understanding Requirements With Domain Storytelling . 205

Combining tools . 207
Domain Storytelling and EventStorming . 207
EventStorming and Example Mapping . 207
Wall of Technical Debt and Mikado Method . 210

Introduction
By our nature, humans are visual creatures. Throughout times, we had created different ways to
communicate visually. We wrote in caves, and the Egyptians created hieroglyphs, then the alphabet
appears and more recently the icon fonts. These are examples where we excel in the creation of ways
to communicate visually.

Fast-forwarding to today, building software is commonplace in most of the organisations. Even if
the organisation is not on the software business, e.g., is not selling software, it is most likely that
they have team(s) creating software for the internal processes.

The book is intended to create a shortlist of visual collaboration tools to aid teams building software.
It will describe the visual collaboration tool, the benefits and drawbacks. In the end, it will explain
different ways to combine the various visual collaboration tools to maximise the learning process
for the team.

Everyone involved in the software development process can benefit from this book. Software devel-
opers, testers, architects, experience designers, system administrators, product owners, managers, C-
level executives, user researchers they are all (in different capacities), involved in creating software.

We got the idea for this book from the format of the liberating structure with our experience with
combining visual collaborative tools learned from the Domain-Driven Design community. We tried
different techniques in different contexts, and sometimes we failed, and other times we had success.
We are sharing what we learned; we firmly believe that we need to keep learning to deliver quality
software. That is why we, Kenny Baas-Schwegler and João Rosa, started our journey to find, explore
and curate these tools into this book. Find other people who could contribute and learn together as
a community!

The visual collaboration tools are ordered alphabetically. You can read the book from beginning
to end, or pick what is sound for you. We believe the field stories will provide light on how
the community use it. Context is the queen! If you have experience with any of these visual
collaboration tools, contact us. Your experience is valuable! Same applies for visual collaboration
tools or combinations that are not mentioned in this book.

Let’s collaborate!

• Kenny Baas-Schwegler, Krisztina Hirth & João Rosa

A word about teams
By Paul de Raaij

When you are talking about your team, who is it that you are talking about? Is it the scrum team
you are part of? Is it the group of colleague architects you work with once a week? Or is it another
composition of people?

Hopefully, you feel and are part of a team. A group of people you feel connected with. A collective
you work closely with and share interests or goals. Or in the worse case, you are part of a team
simply due to hierarchy. In any circumstance, you are part of a team.

However, we work and interact daily with people that are not part of that core team. For example,
when refining a user story you interact with a subject matter expert from the business. An architect
might help your team in drafting an architecture for your solution. Third-party systems require
integration and often close collaboration with the support team of a service provider.

As a consequence the dynamics between the people involved in the interaction change. It is not the
same as when you are collaborating with your core team. For the team members you know, you are
aware of their quirks and have come up with mechanisms to cope with those quirks, albeit good or
bad. Each time a different person interact with you and your team the psychological safety changes.
As a result, a member of the team might speak up less, put its ego on the front or not challenge
an assumption that is been put on the table. Important knowledge will not be brought up and the
outcome of the interaction will be sub-optimal.

The visual collaboration methods, as described in this book, can help tremendously to increase the
psychological safety for all participants in the interaction. It provides structures and opportunities
for everyone to speak up. In my experience, I have seen better outcomes of meetings that prevented
weeks of effort go to waste because everyone was able to put their knowledge to the surface without
being overthrown by whoever spoke the loudest.

Facilitation
There are debates in the community if a visual collaborative workshop needs a facilitator, and who
should do that. I believe anyone can facilitate a visual collaborative workshop and the best way to
start is to try, fail and learn. When we try and experiment, we must do it in a safe environment,
where failing is tolerated and to be expected. Doing it outside of that safety can have some dangers
when trying. If we don’t have approval from people with higher rank, don’t have their consent we
might be stretching our rank, especially when it fails. People who have a higher rank might not
understand why we need to change the way we work. We need someone with experience there to
manager that. Visual collaboration can also unearth social conflicts in groups and organisations. If
we don’t have the meta-skills of an excellent facilitator to deal with these, it can cause more harm.
That is why most of this chapter came straight out of the superb book Building Tribes by Jitske
Kramer and Danielle Braun. I think it gives us great insights and lessons from anthropology we can
use in visual collaborative modelling. Insights that help guide us in dealing with the social issues
that can arise during visual modelling.

Campfires instead of meetings

In the book, they explain that currently, meetings insides offices are usually being held partly online
through email, Snapchat, Skype, Zoom etc. However, real contact can only happen when people
meet in real life. Face to face, we can better interact and dump real stories, stories about courage,
talking about tension, sharing failure and sadness, and it is here where we can exchange the best
ideas.

They don’t say we won’t be able to do these visual techniques remotely. However as Jitske and
Danielle wonderfully explain in their books, culture forms around these interactions. In these
interactions we are in contact, in real conversations with each other and have more meaningful
dialogues. Yes we will have good outcomes through Zoom, Skype or any other digital meetings.
However it is much more effective to do these in conversation where peoples have the fullest
attention for each other. That is why they call out that we never ever do a ‘meeting’ anymore,
but to organise campfires with real contact. Sometimes literally, sometimes figuratively speaking. A
campfires is sometimes where we have real conversation, with the fullest attention for each other,
and to discuss agenda points and the goal of the get together.

Facilitator as magician

A campfire always needs someone to light the campfires. In practice, everyone can do this. Jitske and
Danielle make the comparison with magicians, a tribal role they describe in their book. Magicians

Facilitation 4

are the people a tribe needs, that has unique skills and tool, hold a lot of information and are the
one people will look at when they need a miracle. However, they always need recognition from the
people in power, the chiefs. If not they will end up on the stakes like warlock and witches did in the
passed. Nowadays that usually means getting fired or banned from that group.

We find these magicians usually in the role of a consultant, coaches, trainers, people who have a
free role, or work at HR. They are the people that bring other people together to make magic. Jitske
and Danielle describe in their book these six fundamental factors if someone is the facilitator for
starting campfires:

• Techniques and skills
• Posture, metaskills and charisma?
• Holding space: don’t be afraid of chaos and conflicts
• Attention area of the magician
• Ranking and place in the group
• Magician or witch

In the following paragraph, I will explain what this means for facilitating a visual collaborative
modelling session.

Techniques and skills

Everyone can learn techniques and skills to facilitate; it is one of the reasons João and I wanted
to curate this book. This book will teach you by reading how to use several techniques and tools
for visual collaboration. We hope you get the information you need from reading this book so that
you can start lightning campfires yourself. Because through failing, we will learn and acquire new
insights and become better and more successful.

Another way to get new insights and learn is by having conflicts. As with the paradox of failure and
success, to create peace, we need to make conflicts. People tend to avoid failure and conflict, which
is a real shame because we can learn so much from both and grow as humans. Since humans try to
avoid conflict, it is the job of the facilitator to guide the group towards and into these conflicts.
Whenever tensions and stakes gets too high people will show what Myrna Lewis in her Deep
Democracy the lewis method calls edging behaviour. Like a cat that starts licking itself during a
staredown with another cat. Humans also show edging behaviour; grabbing their phone, doodling,
turn mute, looking at their phone, let the same conversation cycle. Everyone knows that feeling
when a conversation keeps cycling back over and over again. That is edging behaviour of the whole
group.

Whenever people or a group shows edging behaviour or a conversation starts to cycle, we are missing
insights as a group. Not only are we missing insights, but we also won’t get the full collective buy-in
from the group. People will feel left out or unheard, which in turn resolves into tension and unspoken
frustration. People start to resist, first openly with jokes, but finally stopping conversation or not
participating anymore. In Deep Democracy, we call this the resistance line.

Facilitation 5

The resistance line

In these tensions, perceptions and implicit insights is where the real innovations lie. So it is the job
of the facilitator to gently guide the group or team in these tensions to discuss them, Myrna Lewis
calls this kissing them over the edge. A good facilitator can do this by stating what is happening at
precisely the right moment. Too early and the group didn’t feel it yet and will dismiss it, too late
and the group already mentally checked out unable to return them. In deep Democracy, we call this
giving out a weather report. Tell what you observe, state the fact and wait for the group to solve
the problem themselves, or if it is too much of a hotspot the facilitator need to guide them into the
debate or conflict. See Deep Democracy the lewis method for exactly how to do that!

Posture, metaskills and charimsa

Everyone can learn techniques and skills given enough time and experience; for one, it will come
more natural than to others. However, posture, meta-skills and charisma are much harder to learn.
It requires a lot of self-reflection and inner work. And sometimes it is not even possible to facilitate,
because of our background people won’t feel safe to share their knowledge. As a facilitator, we are
the people that make sure the conversation flows so that the group can say what needs to be said.
A facilitator cannot have stakes, need to stay neutral, protect the group, be a leader and push and
pull the energy of the group. A facilitator needs to be ready for the unexpected, for conflicts, for
polarisations to pop-up and manage, to get all the wisdom from the group to get the most effective
outcome and that the whole group can go along with, without resistance.

There are many meta-skills one can learn, but in my opinion, the three meta-skills Myrna Lewis
described in her Deep Democracy method are the most important; Neutrality, super listening and
compassion. Neutrality to really accept and be open for all different insights, without judgement,
regardless of who it is, or who is not there in the group. Neutrality is standing for everyone in the
group and no one. Super listening to not only hear but also observe, feel the energy of the group by
being fully conscious. Compassion in finding ourselves in others, genuinely accept their opinions
without judgement, how wrong we might find them.

Facilitation 6

Holding space: don’t be afraid of chaos and conflicts

Conflicts, like failures, are moments we can learn and understand each other. If we always agree
with each other, we will never progress or have new ideas. Visual collaboration is the best moment
to get everyone there current mental models out to discuss these. You can imagine that it can cause
debate or conflict to arise. As a facilitator, we must create and hold the space so that the group can
work in that energy, safely exchange ideas, or dive into the conflict so that people can learn. Make
sure that when we start, we create the space that is needed, and slow down and give silence to hold
that space when conflict arises.

Ranking and place in the group

Even though we mastered all the skills, have years of experience with facilitation, it can happen we
are not the right person to lead a visual collaboration. The ranking is essential to be aware of, even to
the group. Ranking can make or break our sessions, and it isn’t only hierarchical, it is social as well.
As the CEO or a close relation toward that CEO, people might not trust us, that is a hierarchy. As a
tall white man, people may fear you, and as a person with a diverse background who is small, people
might not accept you, these are social. I once facilitated a session with a colleague and my wife. My
colleague and I are both tall white man, so the group accepted us as a high enough social rank to
lead. However, people did not feel safe to share everything with us. People didn’t feel threatened by
my wife, being from a diverse background. They opened up to her, gave her information that was
essential to the group process. We together made a difference that each one of us alone could not.
Be aware of that ranking, of our social powers.

Getting burned at the stakes

Although visual collaboration can be significant, as mentioned earlier if it does not deliver, we might
get burned at the stakes, especially as a facilitator. Even though we think the session ended good,
did we have buy-in from everyone? Didn’t we overstep our boundaries given to us by the people in
power? Do people want to connect? If we are not careful, the group or the people in power might
turn against us. We call this getting burned at the stakes. Getting fired, being bullied, or we lost our
changes and people will never ask us back again.

Authors, attribution and citations

Book: Building Tribes - Reisgids voor organisaties; Jitske Kramer, Danielle Braun; 2018

Book: Sitting in the Fire: Large Group Transformation Using Conflict and Diversity; Arnold Mindell;
2014

Deep Democracy the Lewis Method¹

Kenny Baas-Schwegler(@kenny_baas²) - Author of the article

¹https://deep-democracy.net/
²https://twitter.com/kenny_baas

https://deep-democracy.net/
https://twitter.com/kenny_baas
https://deep-democracy.net/
https://twitter.com/kenny_baas

Prepare and hold a Visual Meeting
Holding a visual collaboration session with impact, I use the six phases Jitske and Danielle describe
in their book Building Tribes.

• Preparations for the session
• Starting the session, or as Jitske and Danielle call it ‘lighting the campfire’,
• Visual Collaborating - the session itself
• The climax
• Wrapping-up and extinguishing the campfire
• Retrospective

Each of the visual collaboration techniques you will read about in the book, we can use these six
phases. We will only get the full benefit of these sessions if we cater to all the needs in these six
phases. It is about the attention and the intensity, not the amount of time. Visual collaboration will
only work when people want to collaborate and listen to each other. Else we might as well skip it
and don’t waste our time. The phases might also look different depending on the tool used; you can
read more about it in the tool explanation.

Phase 1: Preparations for the session

As we all know, or should know, preparation is vital for an impactful visual collaboration session.
We need to know with whom will we prepare it, or can we do it alone? What is the goal of the
session and which visual collaboration tool shall we use, or do we need to combine them? Given
the tool, what room setup do we need? How many wall space, what equipment? Who do we invite,
which perspectives do we need? Who will facilitate, who will scribe? We need to account for all
these questions in the preparation of a visual collaboration session.

Who to invite?

The most asked question is “Who do we invite in these sessions?”. Better is it to ask ourselves which
different perspectives we will invite? Effective visual collaboration is all about getting a group of
people together with diverse perspectives. Will we be talking about the customer, then we at least
need someone who understands there need. Will it impact our colleagues who use our software,
perhaps invite them. Are we changing the way we interact with other teams, bring them along! Can
we plan our work independent from other teams in the department, if not then perhaps we need to
make the group together with that department? Good visual collaboration requires a diverse group
of people with different perspectives, think about the following people:

Prepare and hold a Visual Meeting 8

• Kinship: Team members, project groups, guilds, people of other teams in our department.
• Leaders: Managers, Key figures, dungeon masters
• Perspectives: Which perspectives cannot be missed. Who are we impacting? The classic

mistake is thinking internally instead of externally like the customer. If we cannot invite these
perspectives, how can we represent their view? For instance, invite UX designers or customer
researchers to be the voice of the customers.

• Competence, skills, knowledge: Do we need specific expertise like someone from security or a
data-researcher

• New perspectives: Do we have enough ‘weird’ people in the room. People that annoy us, people
that are in our allergies zone, new people. People who are not in our ‘normal’ zone are most
likely to give us the insight we need. That also accounts for our competition. We always require
new insights.

If you’re always trying to be normal, you will never know how amazing you can be.

—Maya Angelou

Who will facilitate and how?

A facilitator is not one person or a specific job. Anyone can be the magician to light the campfire, to
make the conversation flow. Inside the team, someone from another team within the organisation or
an external person. Sometimes a team member tried to facilitate, but it did not work, but as soon as
that external consultant got hired it all worked out. Outside perspective sometimes gets more valued.
However, let’s not call in an external facilitator for every visual collaboration we do. There are a
lot of magicians out there within the organisations, from agile coaches to architect or the engineers
within the teams. Just be mindful of the ranking at play, and how neutral that person can be and
needs to be. Finding the right person for the job is essential!

Depending on the size of the group and the visual tool we want to use to support our session, we also
might need more facilitators. Always have the main facilitator, we cannot have two captains on a
ship! Decide who leads and who co-facilitates. The co-facilitator can make or break the session.
It is the person who will be less of an active participant and more of a passive participant. I
take my learnings from the method participant observation used by qualitative researchers like an
anthropologist. The method describes several types of observations:

• Non-Participatory: No contact with population or field of study
• Passive Participation: Researcher is only in the bystander role
• Moderate Participation: Researcher maintains a balance between “insider” and “outsider” roles
• Active Participation: Researcher becomes a member of the group by fully embracing skills and

customs for the sake of complete comprehension
• Complete Participation: Researcher is completely integrated in population of study beforehand

(i.e. they are already a member of particular population studied).

Prepare and hold a Visual Meeting 9

As the facilitator, it is good to be an active participant. However, if we are alone, we might want to
sometimes step out towards moderate or even passive participation. If we are with two facilitators,
the facilitator can stay active while the co-facilitator can stick mostly in passive participation. If we
are active, we are more preoccupied to really feel the energy of the group, to super-listen what is
happening in the group. And we might miss a lot of social cue’s. Having that passive participant in
the back can tremendously help spot hot-spots and edging behaviour in the group that will help the
group progress if discussed.

The required setting

The right space is essential. Nothing can kill an intense visual collaboration of a day without having
fresh air, enough breaks with food, daylight or enough space. Visual collaboration is also a creative
process; besides the need for the practical, the proper surrounding can also really help spark that
creativity. Have you ever have a disco party without suitable lights? We can still dance, but having
disco lights present with a smoke machine helps the party get started. Don’t even get me started
about a light floor that will make the party a hit! A lot of organisations cater for the practical, but
never stand still how good surroundings also affect our meetings like it does with parties.

Phase 2: Lighting the campfire

Then the time has finally come, and the session will start! People will join the session and are still
pre-occupied with previous sessions, conversations, maybe they are still tired, or something is up
in their personal life that makes not present at the session. It is essential for the facilitator now to
welcome the people in, show the correct energy so that people can make the transfer from before
the session, towards the session. The facilitator needs to create ‘space’ now for the group of people
who now want to make a difference by using virtual collaboration. It is the first time that the group
makes contact with each other. Without that personal contact, no tooling will help here.

Check-in

With the check-in, we make sure the individuals that got together can become a group by allowing
everyone to become present in the session. The check-in is a conversation model from the lewis
method of Deep Democracy. Sometimes a check-in can be 5 minutes, sometimes it might take a day,
and that is fine. I always advise to do one, and I don’t do one without! The basics of a check-in are
a few questions that are relevant for the meeting. For example, what do we want as outcomes for
the meeting, what are the challenges you think we might face, what are our hopes for the meeting?
Remember, the more specific we make it for the session, the better the session goes.

The check-in starts when the facilitator introduces the concept of the check-in and the rules:

• It is is no dialogue, we don’t have a conversation or debate. We share and dump and hear where
everyone is.

Prepare and hold a Visual Meeting 10

• We do it popcorn style, so not pointing out people to talk, not making around. People do the
check-in when they feel like doing it; ‘pop when you are hot. Don’t wait too long cause you’ll
get burn’.

• Everyone does a check-in

After we explained the rules, the facilitator asks the questions and then leads by example by
answering them, setting the tone for others to join in. It is crucial to speak from the hearth, show
vulnerability when needed. Don’t make it a rational check-in. The co-facilitator check-ins when the
person feels the group needs a nudge to move on. When everyone checked-in the facilitator wraps-
up by making a summary of what has been told. It is the most challenging part, and we want to
discuss what is said, not who why and what a specific person said. It is crucial people felt heard and
recognised themself in the summary.

We end the check-in by asking people if now they want to react to what has been said. Doing that
might instantly trigger a conversation. When that happens, and people already start the collaboration
do not forget to visual complexity straight away when needed!

Outcomes, Agenda, Roles and Rules

In his book Visual Meetings David Sibbet explains that they found out there are four things that are
most productive to get clear; The Outcomes, Agenda, Roles and Rules, in short OARR. Making these
four things visual and clear at the start of our meetup makes us look prepared. It also helps clarify
to people why they are here, who they will be working with, what they will be doing and who does
what. According to the team performance model by Drexler/Sibbet based on the work that Arthur
Young describes in his Theory of Process. There are four flows of activity in a meeting:

• The flow of Attention
• The flow of Energy
• The flow of Information
• The flow of Operation

Once we managed the flow Young argues that all processes move from having no constraint in the
beginning, when they are merely potential and a sense of purpose, to having lots of constraint at the
point we are assigning a budget or allocate real people to a project. Once we cross that line, we get
to the enactment of implementation and high performance. By using such a simple template as the
one above we can start managing the flow. Combined with a powerful check-in and, we will have
all the ingredients for a successful visual collaboration!

Prepare and hold a Visual Meeting 11

Team performance model Drexler/sibbet

Phase 3 and 4: Visual collaboration towards the climax

Each Visual collaboration will be different from the other. It has its own build-up, energy and
focus. In the tools sections and the field story, you can read up about these tools and how to
use them effectively. Combined with the facilitation and preparation described in these chapters,
you are bound to have real conversations with people. Groups form around interaction, and the
visualisation is supporting those interactions. Ruth Malan has been talking a lot about Visualisation
in Software Architecture. She says “Conversations are so important, but conversations with visual
models (diagrams of facets of the system) help see what we mean — helps break ground and
create common ground”. She then goes on saying “Create visuals together in a conversation is
an important point, but there’s also more than “speaking for” (or writing about) that is in play.
Sketching, diagramming, modeling, together is a way to bring more minds to bear, to explore/probe
the design context and options/possibilities.”

“Coupled, their interplay and overlap, facilitate the emergence of new perspectives.
Actively interweaving multiple strands of thought Creates common ground.”

— Nick Sousanis (@Nsousanis), Unflattening, pg 37

As I hope you understand by now, we form groups around interaction, but it is essential to visualise
these interactions to become more effective at what we do. At each visual collaboration session, we

Prepare and hold a Visual Meeting 12

do just that, and we work towards a climax. Every visual collaboration session works towards action
at the end. A symbolic act or decision, depending on the outcomes of the session.

Phase 5: Wrapping-up and extinguishing the campfire

At some point, the time is up, or the outcome has been reached, and it is time to extinguishing the
campfire. Just as we started the session with a ‘rite de passage’ with a check-in, we now need to do
the same with a check-out. It is time to wrap up and say goodbye to the group and, to the interactions
we had and have a few last words. We can do it by asking a few questions; what are your thoughts
after the session? What hit home to you during the interaction? Or ask for any feedback about
the session and how people would have seen the meeting different. We will use the same style as
the check-in, sharing and dumping in popcorn style. It is vital to create that space where people
can express their lingering emotions and that it is okay to express them without any rejection. Be
prepared that a group can start another discussion. Wrap it up for a next meeting. Is it not possible
then start the session all over again with a check in!

Phase 6: Retrospective

Everyone is gone, now it is time to clean up and document the outcomes. It is also time to already
reflect, share feeling and first insights of the session. What went well, what could have gone better
and how are we feeling about the way we facilitated. Here it is important to discuss how the
interaction went in the group. How was everyone participating, is everything said that needed to
be said. Did we lack certain perceptions in the group, or did certain perceptions not emerge? Do we
need to speak with certain individuals after the session. Everyone is different and there is a specific
group of people that need to let all the information and cues sink before able to have insights that
are vital for the group. Do we need to plan another session, and what are we going to do different.
Make agreements on follow-ups to make the next session even better!

Authors, attribution and citations

Book: Building Tribes - Reisgids voor organisaties; Jitske Kramer, Danielle Braun; 2018

Book: Visual meetings - How Graphics, Sticky Notes and Idea Mapping Can Transform Group
Productivity; David Sibbet, 2010

Deep Democracy the Lewis Method³

grovetools-inc visual planning templates⁴

Ruth Malan(@ruthmalan⁵) - Source of knowledge and wisdom in visualisation for over 15 years.

Kenny Baas-Schwegler(@kenny_baas⁶) - Author of the article
³https://deep-democracy.net/
⁴https://grovetools-inc.com/collections/visual-planning-templates
⁵https://twitter.com/ruthmalan
⁶https://twitter.com/kenny_baas

https://deep-democracy.net/
https://grovetools-inc.com/collections/visual-planning-templates
https://twitter.com/ruthmalan
https://twitter.com/kenny_baas
https://deep-democracy.net/
https://grovetools-inc.com/collections/visual-planning-templates
https://twitter.com/ruthmalan
https://twitter.com/kenny_baas

Tips and trick for working remote
Giving the situation we are in, which is the COVID-19 outbreak, most of us need to reinvent how to
do visual collaboration remotely. There is still a lot to discover; however the basic setup described
in the previous chapter doesn’t change. It is even more vital to focus on the interaction of the group
doing these sessions remotely. A good check-in makes the difference here. However, tools are more
crucial to use, and preparation of these tools are much more critical. We usually have a bag of tricks
with stickies and a wall, but now we need to make sure we have a stable internet connection, good
camera’s we can turn on and of course a good virtual whiteboard to work with.

The only problem is, all these tools are usually for the privileged. We want to see what works and
can work with our team or group. If some don’t have a stable internet connection, we need to make
sure they are still included. Preparation is getting so much more important—also, empathy towards
people in specific contexts. What can we do to make the session better online, which is not only
bounded by tools, but tools can be the restriction. We are still learning in this area.

Six Trumps: The Brain Science That Makes Training
Stick

It is still too early to know what works well, but my key heuristic in giving session is to blend in the
Six trumps described by Sharon Bowman:

1. Movement trumps sitting.
2. Talking trumps listening.
3. Images trump words.
4. Writing trumps reading.
5. Shorter trumps longer.
6. Different trumps same.

As we continue to work on the book, I will add more and more of my heuristics on how to deal with
online visual collaboration. The first ones that I now use successfully are:

• Shorter trumps longer & Movement trumps sitting. -> Every 20 minutes you want to take a
break and let the participants move for at least 3 minutes

• Shorter trumps longer -> Split the session up in sections of two to three hours. Making the first
one possible longer for a good long check-in.

• Different trumps same & Talking trumps listening -> Switch the person who drives and changes
the stickies on the board every five minutes.

Tips and trick for working remote 14

Authors, attribution and citations

Six Trumps: The Brain Science That Makes Training Stick⁷

Kenny Baas-Schwegler(@kenny_baas⁸) - Author of the article

⁷https://bowperson.com/wp-content/uploads/2014/11/SixTrumpsArticle220101.pdf
⁸https://twitter.com/kenny_baas

https://bowperson.com/wp-content/uploads/2014/11/SixTrumpsArticle220101.pdf
https://twitter.com/kenny_baas
https://bowperson.com/wp-content/uploads/2014/11/SixTrumpsArticle220101.pdf
https://twitter.com/kenny_baas

Visual Collaboration Tools
Assumptions Mapping

What is made possible

The following approach is attempting to address a recurring experience: Frequently feeling the
painful and negative impact on a team, caused by unstated and invalid assumptions.

Certainty exists on a relative spectrum between FALSE at one extreme, TRUE at the other or
“it depends” everywhere in between. Certainty is not binary and is usually an indicator of how
tolerant we are of making risky decisions based on the possibility that the result does not meet our
expectation.
How do we set our expectations? By referencing mental models based on past lived experience,
either personal, taught or inherited.

One mental model quote that comes to mind is this one by David Deutsch, Physicist from his TED
talk: A new way to explain explanation - 28 July, 2009⁹,

“Our lives are based on symbols and mental models, that we use to understand and
internalize the external world. But are our mental models ‘accurate working models’
?”

One of my favourite quotes about decision making comes from Thinking About Thinking: Tiny
Changes Produce Big Results by Farnham Street, 10 April, 2018¹⁰,

” What separates good thinkers from great thinkers is:

1. The number of mental models at their disposal.
2. The accuracy of those models.
3. How quickly they updated them when they’re wrong or in the face of feedback.”

I’m going to focus on the point from the previous quotes about looking at the accuracy of mental
models by assessing and validating assumptions you and team make, state and apply to your
decisions. This approach should enable you to quickly update your reference mental models, the
third point, reducing the complexity of that task over time.

⁹https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation
¹⁰https://medium.com/the-mission/thinking-about-thinking-tiny-changes-produce-big-results-4fb19fca87f3

https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation
https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation
https://medium.com/the-mission/thinking-about-thinking-tiny-changes-produce-big-results-4fb19fca87f3
https://medium.com/the-mission/thinking-about-thinking-tiny-changes-produce-big-results-4fb19fca87f3
https://www.ted.com/talks/david_deutsch_a_new_way_to_explain_explanation
https://medium.com/the-mission/thinking-about-thinking-tiny-changes-produce-big-results-4fb19fca87f3

Visual Collaboration Tools 16

How to use it

The Decision Process

The creative process usually looks and feels like the design squiggle below:

image credit - https://thedesignsquiggle.com/

What I’m proposing is an approach to systematically assess critical and essential assumption
statements used for decision making, to avoid the well known negative impacts of incorrect or worse,
unstated assumptions.
Assumptions have their appropriate use in speeding up decision making. But what use is speedy,
erroneous decision making if you don’t have a mechanism to catch, address and fix the decision
errors? The velocity of decisions towards a specific goal would be a more useful, effective measure.

Once a thread of an idea has the escape velocity to exit that gnarley knot, how do we keep it from
returning by collapsing under the weight of inaccurate and/or unstated assumptions?

Assumptions

First things first -
Definition of an assumption (noun): Taken as fact or true, without proof or evidence.

Visual Collaboration Tools 17

Assumption advantages Assumption disadvantages
Decision Speed: 100 miles/hour … in a
circle with a raduis of 5 miles. Increasing
the speed won’t move you out of the 5
mile radius.

Team Death march: run out of planned
time so everything and everyone
reacting to making the agreed, critical
deadline. Team Burnout: Working all
the time on the death march, getting
more and more unproductive as humans
are not perpetual motion machines.

Table 1 - Advantages and disadvantages of assumptions.

Notice the negative consequenses of assumptions are usually not (only) felt by the decision maker(s).
They are multiplied by the negative impact on the rest of the team or organisation.

Why would anyone base mission-critical decisions on such a fickle structure?

“If a decision is reversible, we can make it fast and without perfect information. If a
decision is irreversible, we had better slow down the decision-making process and ensure
that we consider ample information and understand the problem as thoroughly as we
can.”

Go Fast and Break Things: The Difference Between Reversible and Irreversible Decisions by Farnham
Street, 4 May, 2020¹¹

Introducing the Presumption Framework

Since we don’t always know which type a decision is, apply the presumption probability framework
on your assumption statements used to make decisions, tracking validity and impact over time.

I’d like to introduce presumptions and starting with definition of a presumption (noun): An idea
taken to be true, on the basis of probabilty.

I’m going to use a shorthand notation to represent assumptions and presumptions in the rest of this
article.

A or P%[0-100] where
where:

• A = Statement is an assumption
• P = Statement is an presumption
• %[0-100] is the probability of occurence in the specific context. %0 means your assumption

statement will never happen and %100 means it is guarenteed to occur.
¹¹https://fs.blog/2018/04/reversible-irreversible-decisions/#:~:text=If%20a%20decision%20is%20reversible,%20we%20can%20make%20it%

20fast%20and%20without%20perfect%20information.%20If%20a%20decision%20is%20irreversible,%20we%20had%20better%20slow%20down%
20the%20decision-making%20process%20and%20ensure%20that%20we%20consider%20ample%20information%20and%20understand%20the%
20problem%20as%20thoroughly%20as%20we%20can.

https://fs.blog/2018/04/reversible-irreversible-decisions/#:~:text=If%20a%20decision%20is%20reversible,%20we%20can%20make%20it%20fast%20and%20without%20perfect%20information.%20If%20a%20decision%20is%20irreversible,%20we%20had%20better%20slow%20down%20the%20decision-making%20process%20and%20ensure%20that%20we%20consider%20ample%20information%20and%20understand%20the%20problem%20as%20thoroughly%20as%20we%20can.
https://fs.blog/2018/04/reversible-irreversible-decisions/#:~:text=If%20a%20decision%20is%20reversible,%20we%20can%20make%20it%20fast%20and%20without%20perfect%20information.%20If%20a%20decision%20is%20irreversible,%20we%20had%20better%20slow%20down%20the%20decision-making%20process%20and%20ensure%20that%20we%20consider%20ample%20information%20and%20understand%20the%20problem%20as%20thoroughly%20as%20we%20can.
https://fs.blog/2018/04/reversible-irreversible-decisions/#:~:text=If%20a%20decision%20is%20reversible,%20we%20can%20make%20it%20fast%20and%20without%20perfect%20information.%20If%20a%20decision%20is%20irreversible,%20we%20had%20better%20slow%20down%20the%20decision-making%20process%20and%20ensure%20that%20we%20consider%20ample%20information%20and%20understand%20the%20problem%20as%20thoroughly%20as%20we%20can.
https://fs.blog/2018/04/reversible-irreversible-decisions/#:~:text=If%20a%20decision%20is%20reversible,%20we%20can%20make%20it%20fast%20and%20without%20perfect%20information.%20If%20a%20decision%20is%20irreversible,%20we%20had%20better%20slow%20down%20the%20decision-making%20process%20and%20ensure%20that%20we%20consider%20ample%20information%20and%20understand%20the%20problem%20as%20thoroughly%20as%20we%20can.
https://fs.blog/2018/04/reversible-irreversible-decisions/#:~:text=If%20a%20decision%20is%20reversible,%20we%20can%20make%20it%20fast%20and%20without%20perfect%20information.%20If%20a%20decision%20is%20irreversible,%20we%20had%20better%20slow%20down%20the%20decision-making%20process%20and%20ensure%20that%20we%20consider%20ample%20information%20and%20understand%20the%20problem%20as%20thoroughly%20as%20we%20can.
https://fs.blog/2018/04/reversible-irreversible-decisions/#:~:text=If%20a%20decision%20is%20reversible,%20we%20can%20make%20it%20fast%20and%20without%20perfect%20information.%20If%20a%20decision%20is%20irreversible,%20we%20had%20better%20slow%20down%20the%20decision-making%20process%20and%20ensure%20that%20we%20consider%20ample%20information%20and%20understand%20the%20problem%20as%20thoroughly%20as%20we%20can.

Visual Collaboration Tools 18

Validation scale

P%0
A statement with (P%0) means it has 0% probability of occuring in the context you are considering.
So for all intents and purposes, in your case it is effectly a logical boolean “FALSE”. It is a lie or an
untruth.
This helps validate stated assumptions that could also be “taken as fact or true” that are not i.e (A%0).
(A%0) Is the root of all bias; an assumption never validated as it is accepted as true, without proof
or evidence.
P%0=FALSE.

P%100
A statement with (P%100) means it has 100% probability of occuring in the context you are
considering. So for all intents and purposes, in your case it is effectly a logical boolean “TRUE”.
It is a truth.
This helps validate stated assumptions that could also be “taken as fact or true” that are i.e i.e (A%100).
P%100=TRUE

For anything between (P%0) and (P%100), the answer is “it depends”.

I’m going to state that a 70% probability of occuring would be the acceptable threshold to use an
assumption statement as the basis for decision making - (70tP).
If the statement is critical for making a decision, it’s P% rating has to be P%70 or greater.

So finally, for rating any decision making assumption statement:

• (70tP%70) to (70tP%100) == (A%100), so can be relied on to occur/apply to your context.
• (70tP%0) to (70tP%69.999) == (A%0), so should be avoided at all costs.

Visual Collaboration Tools 19

Figure 1 - Chart showing 70tP% compared to A100%.

In the chart in Figure 1, there are 4 accepted, qualified and validated assumptions in this set of
assumptions.

The problem with just stating assumptions you make during your decision making process e.g.
Architectural decisions document, is that if you don’t rate, clarify or validate them, you assume,
without proof, they apply all the time. Or written another way
(0tP%0) to (0tP%100) == (A%100).

Visual Collaboration Tools 20

Figure 2 - Chart showing 100tP% compared to A100%.

In the chart in Figure 2, for the same set of assumptions in Figure 1, for the adjusted and contextual
threshold of 100t, there is now only 1 accepted , qualified and validated assumption. But all stated
assumptions would have been accepted as “true”, without validation and the acceptance threshold.

• (100tP%70) == (A%100), so can be relied on to occur/apply to your context.
• (100tP%0) to (100tP%99.999) == (A%0), so should be avoided at all costs.

Presumption Framework Example

A trivial example that hopefully demontrates the use of the presumptions framework.

Statement: “I have a red car.”

(I presume) You are currently driving a red car (P%50). Why is the probility of you currently driving
a red car only 50%? I’m not certain other contextual statements might apply that could impact the
validity of that assumption. You could also have a blue car and you might not have driven your red
car for 3 weeks, etc. So to validate the statement that it occurs at least 70% of the relevant time for
the context I’m interested in, I need to do some investigation.

One easy and cheap way to validate assumptions is to ask followup validating questions, like “How
many cars do you have?”
gives more context to the statement.

Visual Collaboration Tools 21

So I started with the assumption statement “You are currently driving a red car (A%100)”.
How do I know that contextually, it is not “You are currently driving a red car (P%0)”?
By validating that I have evidence to support the probability rating for the statement “You are
currently driving a red car (P%100)”. This can be done a number of ways but usually starts by asking
validating questions like:

• How many cars do you have? (if only one, give P%60 rating)
• How many cars do you have access to? (for each car, -P%10)
• How many cars have you ever driven? (don’t change P% rating but good information for

research or future forecasting e.g. typically our target audience drives an average of … cars.)
• How many cars have you driven in the last 4 weeks? (insert your scale for adjusting your P%

rating)
• and so on …

Yes, those 4 extra questions take a little more time, about 5-10 mins which is a much, much cheaper
way to fail learn from a mistake than spending 6 months building a software product on an invalid
assumption (A%0) that won’t sell and make investment money back.

Let’s do the maths for a hypothetical 12 month project:
Validating assumptions = 1 week a month or 12 weeks/3 months in total + 9 months making the
outcome. This would get your key assumptions from (P%0) to (P%70 to P%100) and some people
paying for your outcome.

Not validating any assumptions in a 12 month project with unchanging (100tP%0) = (A%100), could
lead to the result that it is rejected on market release and a lot of head scratching by the producing
company as to why it was not snapped up.
12 months making the outcome that no one wants and worse, pays nothing for it. So back to the
drawing board. What is going to be different this next time? Hopefully, not a repeat of the last 12
months.

Compare 3 months validation + 9 months producing outcome resulting in a profitable market
successful product, as opposed to 12 months producing outcome resulting in a loss-making market
unsuccessful product.

That’s a really expensive “lesson” that could have been proactively addressed by spending some time
on validating the validity and relevannce of your assumptions, as well as their resulting decisions.

Presumption Framework Process

Gather and state assumptions

By swapping out using assumption statements for presumption statements, these are stated, rated
in the specific context they are being applied to and can be validated by testing and feedback during
the lifecycle of the project.

Visual Collaboration Tools 22

An assumption statement curation and prioritisation activity I’d recommend is the Assumption exer-
cise from Enterprise Design Thinking - https://www.ibm.com/design/thinking/page/toolkit/activity/assumptions-
and-questions.

image credit - [EnterpriseDesign Thinking -Assumptions andQuestions](https://www.ibm.com/design/thinking/page/toolkit/activity/assumptions-
and-questions)

Rate assumptions with presumption framework and visualize

Once you have your list of high risk assumptions from step 3 of the activity, then create following
table, with one row for each assumption.
I’d recommend adding all your assumptions so that they can be tracked, validated and updated by
the entire team. Then review impact during sprint planning. Also, you have a visual chart at the
glance that gives you an indicator of how you are doing validating your assumptions.

Visual Collaboration Tools 23

ID (a) Statement
(b)

Date/time
cre-
ated
(c)

Starting
Rate
for P%
(d)

Date/time
last
up-
dated
(e)

Latest
Rate
for P%
(f)

Change
count
(g)

Decision(s)
(h)

Means
to re-
solve
(i)

001 2020
will be
the
year
for
travel

1 Jan
2020

(70tP%100)1 July
2020

(70tP%30) 30
(Once
a
week)

March
2020:
Stop
work-
ing on
all
travel
related
out-
comes.
Switch
to
remote
opera-
tions
and
dis-
tanc-
ing
pro-
cesses
in-
stead.

Survey
on in-
tended
travel
plans
and
monthly
check
on
travel
book-
ings
com-
pared
to pre-
vious
year.

Table 2 - Presumption assessment grid.

Then plot creation date rating (d) against latest rating (f), indicating the passing threshold and change
update counts for each assumption.

My example plot below (Figure 3), demonstrates what typically happens over time. The initial
focus for validation or handling risk and uncertainty is targeted on assumption statments that are
identified as (A%0) at the beginning of a project but ignore the ones that were actually (70tP%30)
because they were rated with high confidence, of course they are true, without proof (A%100).

Visual Collaboration Tools 24

Figure 3 - Chart showing P% starting rate vs latest rate.

When validated at month 7 in a 9 month project, what a surprise finding. This results in a gnarly
knot return (steps 2, 3, 5), who has time to ideate (step 4), escape death march (step 6) and delivery
burn out (step 7), here we come.

Visual Collaboration Tools 25

image credit - https://www.flickr.com/photos/enterprisedesignassociates/8738306308

Conclusion

My recommendation: State and write down your decision critical project assumptions, validate
and rate them early and continually. Will save a lot of deception, heartache, pain and burnout. This
activitiy complements the Decision log¹²

Why?

Back to a story about my team’s unstated and unevaluated assumption. The week before
Christmas we found out that:

1. 3 weeks before an early January delivery and a week before Christmas (step 7) we were
negatively impacted by an 3 month old assumption, rated (A%100) and not stated was was
in fact (100tP%0). The entire project was about to return to chaos to the design squiggle “rat’s
nest”.

2. We spent 12 hours a day for the next 5 days, for a total of 60 hours, on the phone going
from steps (7 to 6) to [steps (5 to 3 to 2)∞ to steps (4 to 2 to 3 to 5)∞] to eventually emerge with
a non-ideal and sub-optimal steps (6 to 7) to still make the “drop”-deadline.

3. This approach should either prevent or at least reduce the lag or delta from invalid assumption
made (100tP%0) to negative impact of invalid assumption by having a visual charting model
for teams to assess the possibility of that negative impact and mitigate against it.

¹²

Visual Collaboration Tools 26

Authors, attribution and citations

This article was written by Dawn Ahukanna (@dawnahukanna¹³). She is a Design Principal
and Front-End Architect at IBM, focused on designing human-centered experiences (HCX) for
asset management applications, leveraging Internet of Things (IoT), Artifical Inteligence/Machine
Learning (AI/ML) technology.

¹³https://twitter.com/dawnahukanna

https://twitter.com/dawnahukanna
https://twitter.com/dawnahukanna

Visual Collaboration Tools 27

Bounded Context Canvas

What is made possible

The Bounded Context Canvas is a design-aid for designing Bounded Contexts. Bounded Contexts are
sub-systems within a larger system, aligned with specific areas of the problem domain the system
represents. In software development, Bounded Contexts can be implemented as microservices or
modules in a monolith.

Using the Bounded Context Canvas forces us to consider the key elements of the design of an
individual Bounded Context. Ensuring that key design information is captured allows us to challenge
the design of our Bounded Contexts more deeply and consider alternative designs.

Bounded Context Canvases can also be stored as artefacts. They serve as a reminder of the key
characteristics of Bounded Contexts for existing team members, new hires, and people working in
other teams. It can also be shared with domain experts, allowing them to provide input into the
design and ensure the software system is aligned with the domain.

Bounded Context Canvas

How to use it

For each of your Bounded Contexts:

1. Draw the canvas on a large sheet of paper, flipchart, whiteboard, or digital tool like Miro.

Visual Collaboration Tools 28

2. Starting at the top left and working down the left column and then down the right-column.

3. If you don’t have the information required to fill in a section, it’s time to break out another
modelling activity like EventStorming to find the missing information.

Preparing the workshop

There are generally two types of workshop you can apply the Bounded Context Canvas to:

1. Assessing the design of an existing system

2. Designing or re-designing a system

For an existing system, you should arrive at the workshop with a visualisation of the existing system.
A context map, a bullet list, or some other type of visualisation of the sub-systems in your software
architecture.

For a new system, first create an EventStorm of the system and then create an initial collection of
potential models, ideally as draft context maps.

For either type of workshop, split participants into small groups of up to 4. Ask them to identify the
most important or most interesting context and create a canvas for it. Then repeat for other contexts
in the system.

You may not have time to create a canvas for every context, so as a rule of thumb, allow 30 minutes
for the first canvas, and 20 minutes for each subsequent canvas. Encourage teams to make a note of
“hotspots” - parts of the design they think need further discussion. And then use dot-voting later to
review the most important hotspots.

Ultimately, there will always be a choice to make between breadth of design vs depth. Decide up-
front based on your goals, but be reactive to what you learn during the workshop. If possible, plan
your time to create a canvas for each context, and then have a second iteration to go deeper and
explore alternative designs.

The workshop

Why?

The workshop can be used to assess the design of an existing system, design a new system, or as
a training exercise to teach attendees how to design better Bounded Contexts. These are all useful
activities because they improve the design of a system by:

1. Producing more modelling options, increasing the chances of creating a better design

2. Identifying problems at the design stage where they are easier to fix

3. Allowing a team to collaboratively design Bounded Contexts and combine the whole team’s
knowledge

4. Enabling domain experts to guide architectural decisions through deeper, and more structured
conversation about the design in business-relevant terminology

Visual Collaboration Tools 29

Purposes

Tips and Traps

• The description section isn’t just filler; it serves a real purpose. It’s extremely common for
people to struggle to articulate the purpose of a Bounded Context and its main responsibilities
or to realise while explaining that it has too many or misplaced responsibilities. It’s also very
common for people to disagree on the purpose of a Bounded Context. Writing down the
description forces people to fully evaluate their fuzzy thoughts and feelings.

• Almost every word on the Bounded Context Canvas should be domain language from your
Ubiquitous Language. Ask your domain experts if there is anything on the canvas that they
don’t understand.

• Use the “Messages Consumed and Produced” section of the canvas to explore alternative
models. Ask lots of “what if?” questions?
- What if we moved this responsibility into another Bounded Context?
- What if we break out these two responsibilities into a separate context?
- What if we take these two responsibilities from this context, and those two responsibilities
from the other context and merge them into a totally new context?

• Dependencies between Bounded Contexts represent greater friction to change, both technical
and social. So be especially diligent in looking for ways to remove dependencies. For each
dependency, ask “what would it take to remove this dependency?”. Then evaluate the pros,
cons, and fixes.

• Remember that the Bounded Context Canvas is not exhaustive. There are other aspects of
Bounded Contexts that need careful design: the technical architecture, and the organisation of
the teams. These are great topics to explore after you have used the Bounded Context Canvas
to create a solid starting point.

• When creating the first canvas, allow for at least 30 minutes and take your time to consciously
discuss and complete each section. If teams rush the first canvas, they will rush all of them
and miss out on the key benefit which is uncovering more details, discussing trade-offs and
exploring alternative models.

• Use post-it notes so that it’s easy to change your mind and explore alternatives.

Authors, attribution and citations

Nick Tune invented the Bounded Context Canvas. Over the course of a few years consulting and
running DDD workshops, he built up a set of implicit heuristics for designing Bounded Contexts.
One day he converted them into a convenient checklist. Over time the checklist evolved a little
bit and eventually it was trialled in canvas format. People found the canvas format easier to use,
especially for collaborative purposes and so the canvas format has prevailed.

Nick has been using the Business Model Canvas since 2012 which was a definite influence in his
decision to create the Bounded Context Canvas.

Visual Collaboration Tools 30

Business Capability Modelling

What is made possible

A business capability is a particular ability or capacity that a business may possess or
exchange to achieve a specific purpose or outcome.

-Ulrich Homann, A Business-Oriented Foundation for Service Orientation¹⁴, Microsoft
Developer Network 2006

Business capability models are frequently used in enterprise architecture as a way to describe a
company in a holistic way, representing the organisation’s business model independent of the
structure, processes, people, or resources like IT systems, buildings, materials, hardware, tools, know-
how etc. Everything is included, every nut and bolt; nothing belongs outside of the model, and its
premise is an outside-in perspective of the company as it strictly describes what the company is
capable of – its abilities.

Business capability modelling is related to the resource-based view¹⁵ of the firm and often regarded
as an extension to it as it also supports other value configurations¹⁶ in addition to classical value
chains, like value networks¹⁷ and value shops¹⁸. This type of modelling may sound academic and
something that only the business and enterprise architects care about, but it is quite tangible and
widely applicable. Simply put, the capabilities are what the business regard itself to be capable of,
what its competence is, both for internal and external parties. What makes the concept a bit hard
to grasp is that they inherently describe what the company does, not how. It is an abstraction of
the business reality that sets them apart from classical business process modelling, which usually
focuses on how things are done. This abstractness also makes the capabilities inherently more stable
than other approaches as they do not change when their implementation does, like automation using
the software. The only reason for them changing is company strategy adjustments, such as deciding
to pivot, extend, or moving out of some business area.

This strict and abstract business view give its enabling components, be it roles (people), processes,
information, and resources, an explicit business context. An interesting aspect of this vantage point
is that the capabilities need to be fairly self-contained, meaning it must be able to deliver on that
capability in relativity independent manner. Furthermore, the capabilities are naturally hierarchical
and decomposable, meaning that one top-level capability, e.g. Sales, will contain a number of
capabilities which again will contain another set. The number of levels differs based on the size
and complexity of the enterprise, but 3-4 levels are common.

¹⁴https://cdn.ymaws.com/www.businessarchitectureguild.org/resource/resmgr/homann_article_on_capabiliti.pdf
¹⁵https://en.wikipedia.org/wiki/Resource-based_view
¹⁶https://cio-wiki.org/wiki/Value_Configuration
¹⁷https://en.wikipedia.org/wiki/Value_network
¹⁸https://en.wikipedia.org/wiki/Value_shop

https://cdn.ymaws.com/www.businessarchitectureguild.org/resource/resmgr/homann_article_on_capabiliti.pdf
https://en.wikipedia.org/wiki/Resource-based_view
https://cio-wiki.org/wiki/Value_Configuration
https://en.wikipedia.org/wiki/Value_network
https://en.wikipedia.org/wiki/Value_shop
https://cdn.ymaws.com/www.businessarchitectureguild.org/resource/resmgr/homann_article_on_capabiliti.pdf
https://en.wikipedia.org/wiki/Resource-based_view
https://cio-wiki.org/wiki/Value_Configuration
https://en.wikipedia.org/wiki/Value_network
https://en.wikipedia.org/wiki/Value_shop

Visual Collaboration Tools 31

Example from an internet service provider.

Although it may seem that business capabilities are something that only business and enterprise
architects care about, they can be used to a lot more than strategic planning and documentation,
some of which may even be relevant for developers and software architects. Especially their inherent
independence and logical boundary fits well with the SOA/microservices principles of autonomy and
explicit boundaries, as well as the concepts of bounded contexts from domain-driven design. Even
without having a defined business capability model at hand, the concept can be used to identify
those services as a heuristic. If you can match the suggested boundary to something that can be
characterised as a business capability, you may be on to a good autonomous service.

How to use it

Preparing the workshop

Before inviting people to participate in a workshop, it is always important to be explicit about the
expectations. Whether the goal is to define a big picture map of the whole enterprise or if it is
detailing the lower-level capabilities defines who needs to be involved. For the top-level mapping
senior business leaders, enterprise architects, and business architects from across the enterprise are
needed, while for the detailing of specific capabilities people with deep knowledge of that part is
required, like product managers, system matter experts, and software architects. Although it can
seem sensible to try to create a full capability map, going all the way from the top to the lower levels
of the hierarchy, the effort will most likely overshadow the benefits. Therefore, adjust the initiative
to the specific goal at hand, be it creating a top-level model to be used for business modelling or to
modularise a software monolith belonging to one of those top-level capabilities.

Another decision that should at least be considered upfront is whether to go for a mostly top-down
or a bottom-up approach. In the former, the top levels are identified first, detailing the other levels
in succession, while the latter starts with gathering as many capabilities from any level and then
mapping them in hierarchy afterwards. Often a combination of the two works well, but an enterprise-

Visual Collaboration Tools 32

wide business capability model can be hard to reconcile without some top-down perspective and
involvement.

Regardless of the approach chosen, the goal is to capture and document the capabilities that represent
what the business does now and what it desires for the future. In most companies, some sort of
business model and business architecture already exists and should be brought to the workshop as
input, be it value chain analysis, business processes, and business plans. Even existing org charts
can be interesting for inspiration, as well as a list of core business entities. For some industries there
even exist publicly available reference models that can be beneficial to take a look at.

The workshop

As this is a highly collaborative workshop where all participates must be able to engage well and
have full attention to the task at hand, any storming type technique can be used. One example could
be to get everybody to write down all capabilities they can think of on a sticky note and share them
with the group when ready. This works especially well for the bottom-up approach. It is also fine
for top-down, but then care should be taken to make sure one layer is in focus at the time.

Remember to cover the entire enterprise, both internal and external capabilities; some capabilities
may be delivered by strategic partners and collaborators – sourcing must be included as it is part
of running the enterprise. The number of capabilities for each level varies a lot from business to
business, as well as the level of detail one wants on the lower levels, but on the top level, 7-10
capabilities are common.

Example of a simple capability map.

Visual Collaboration Tools 33

The initial iterations should probably focus on identifying the capabilities and giving them good
names (nouns or, even better, verb-nouns). A good way of documenting the full set of identified
capabilities is to draw a graph similar to the one shown above, or a set of nested boxes as lower-
level capabilities are framed by their parents. The hierarchy is strict, where one contains the other,
but there is no hard rule to what belongs to which level. Some heuristics may apply though, e.g.
that the top-level is foundational in nature and can be found in many industries, such as develop
products, manage the business, and partner collaboration, while the second level often is a grouping
of the more concrete level three capabilities, like sales planning, purchasing, and customer analytics.

Example of documenting a capability map.

There are a number of tools available for this, like Archimate, LeanIX, and Ardoq, but simply create
it in your favourite drawing tool like Visio, Gliffy, and PowerPoint works fine too. You can also
include the components, i.e. people, data, processes, and tools, in here as well, but in large sets that
gets a messy quickly and will often require more details than just names. Therefore, additional
documentation for each capability is often needed, like this example of a lover level capability
illustrates:

Example of documenting a capability.

Visual Collaboration Tools 34

Keep the description brief and concise, e.g. using a template like “The ability to…so that…”, and take
care of describing it in business terms with a business outcome. Consider also documenting any
dependencies to other capabilities, e.g. messages reacted to or published.

Iterate on the model until a consensus is reached, which will take several sessions and different
peoples involved. But do not fall into the trap of making the model for its own sake – models should
be useful, not complete.

Why?

What makes business capabilities so versatile is their descriptive nature, that they define the problem
space well and says nothing about the solution space. They are a good foundation for a lot of more
detailed modelling, being stable from the business perspective and only change when the business
itself changes.

Purposes

Examples of usages follows:

• An outside-in and holistic perspective of the business, used for:
– Document the business.
– Business consulting and common business language.
– Strategic planning, finding which capabilities are the differentiators and what are support-

ing. Can be combined with a Wardley map to see how they can evolve over time.
– Business analysis, like heat mapping for maturity, effectiveness, performance, duplication-

s/overlap in mergers, and more.
• Technical modelling:

– Data management/system of record as information is related to specific capabilities.
– Service modelling, i.e. defining the boundaries for the services in SOA/microservices.

• A way of structuring your organisation, the teams and departments, connecting them to
specific business outcomes as defined by the capability.

• Planning your product roadmap, e.g. focusing on the strategic capabilities.

Tips and Traps

• Try to cultivate the outside-in perspective, focusing on the what and not the how. It is very
easy to get lured into the processes used to deliver the capability, but focus on the problem, not
the solution.

• Do not use the org chart as a template, only as inspiration at best. For old companies where
parts of the organisation have been stable for a long time can be indicative of a capability. The
organisation is about how to deliver the capability, not necessarily what it is.

Visual Collaboration Tools 35

• Do not use existing IT systems for inspiration either, which may be supporting several
capabilities.

• A common anti-pattern in service design is basing them on business entities/objects, like
product, customer, order, and account, and it is just as problematic as a source for capabilities.
Their life-cycle can be of interest though, since the capabilities often work with them at
different times, and those transitions can be indicative of crossing boundaries.

• Take inspiration from existing business processes, especially those that are long-lived such as
customer journeys. They have steps that may match well with capabilities. Be careful with
short-lived ones though, such as sales and order processes, as they probably belong to specific
capabilities.

• Identify and have a focus on the beneficiaries of the outcome of the capabilities, be it customers,
partners or other internal functions. As always, keep the user in mind.

• There is a lot to naming things, so also for capabilities. As they are focused on the what and
they are about the ability to do something, try to enforce the naming convention of verb-noun
and avoid using generic terms like “management” which does not say much. For example, use
“Sell Services” instead of “Sales” or “Generate Invoice” instead of “Billing”. Make the implicit
explicit.

• View every capability as independent, meaning that it can deliver most of its outcome with
no hard dependencies to other. It can of course react to changes elsewhere but should not be
blocked.

• View a capability as a black-box, with its own people, data, processes, and resources. A nice
heuristic is that it should be “outsourceable”, maintained by a team far away.

• Capabilities are unique and should not overlap, meaning that the role and outcome should not
be found elsewhere. This is why the focus on what is so important and not how which may
very well be duplicated.

• It may be advantageous sometimes when starting from scratch for somebody to build a straw
model before inviting busy people to contribute to it in the workshop. Utilise Cunningham’s
Law¹⁹.

• When using the capabilities as inspiration for service design, be aware of other concerns like
shared data, transactional boundaries, the number of interactions, tight runtime coupling, and
work processes might be just as critical, especially in the lower levels.

See also Defining the Business Capability - A Cheat Sheet²⁰ for more good tips.

Authors, attribution and citations

• Enterprise Architecture as Strategic Differentiator²¹, Ruth Malan and Dana Bredemeyer, Cutter
Consortium Enterprise Architecture Executive Report, Vol. 8, No. 6, 2005

• A Business-Oriented Foundation for Service Orientation²², Ulrich Homann, Microsoft Devel-
oper Network 2006

¹⁹https://meta.wikimedia.org/wiki/Cunningham%27s_Law
²⁰https://www.bainstitute.org/resources/articles/defining-business-capability-cheat-sheet
²¹https://www.cutter.com/article/enterprise-architecture-strategic-differentiator-388826
²²https://cdn.ymaws.com/www.businessarchitectureguild.org/resource/resmgr/homann_article_on_capabiliti.pdf

https://meta.wikimedia.org/wiki/Cunningham's_Law
https://meta.wikimedia.org/wiki/Cunningham's_Law
https://www.bainstitute.org/resources/articles/defining-business-capability-cheat-sheet
https://www.cutter.com/article/enterprise-architecture-strategic-differentiator-388826
https://cdn.ymaws.com/www.businessarchitectureguild.org/resource/resmgr/homann_article_on_capabiliti.pdf
https://meta.wikimedia.org/wiki/Cunningham's_Law
https://www.bainstitute.org/resources/articles/defining-business-capability-cheat-sheet
https://www.cutter.com/article/enterprise-architecture-strategic-differentiator-388826
https://cdn.ymaws.com/www.businessarchitectureguild.org/resource/resmgr/homann_article_on_capabiliti.pdf

Visual Collaboration Tools 36

• From Capabilities to Services: Moving from a Business Architecture to an IT Implementation²³,
Ulrich Homann & Jon Tobey, Microsoft Developer Network 2006

• TOGAF Series Guide: Business Capabilities²⁴
• Author: Trond Hjorteland²⁵ (scienta.no²⁶) with experiences from a diverse set of clients, both

public and commercial.

²³http://www.inthesandbox.com/msba/Shared%20Documents/From%20Capabilities%20to%20Services%20-%20Moving%20from%20a%
20Business%20Architecture%20to%20an%20IT%20Implementation.pdf

²⁴https://publications.opengroup.org/g189
²⁵https://www.linkedin.com/in/trondhjort/
²⁶https://www.scienta.no/

http://www.inthesandbox.com/msba/Shared%20Documents/From%20Capabilities%20to%20Services%20-%20Moving%20from%20a%20Business%20Architecture%20to%20an%20IT%20Implementation.pdf
https://publications.opengroup.org/g189
https://www.linkedin.com/in/trondhjort/
https://www.scienta.no/
http://www.inthesandbox.com/msba/Shared%20Documents/From%20Capabilities%20to%20Services%20-%20Moving%20from%20a%20Business%20Architecture%20to%20an%20IT%20Implementation.pdf
http://www.inthesandbox.com/msba/Shared%20Documents/From%20Capabilities%20to%20Services%20-%20Moving%20from%20a%20Business%20Architecture%20to%20an%20IT%20Implementation.pdf
https://publications.opengroup.org/g189
https://www.linkedin.com/in/trondhjort/
https://www.scienta.no/

Visual Collaboration Tools 37

Business Model Canvas

What is made possible

Finding bounded contexts doesn’t start by coding but it starts by understanding the business domain.
You need to understand your business’ model in order to be able to help them solving their problems.
But how can you learn about the business model? Business Model Canvas (BMC) is a very powerful
tool to visualise the business model. This was introduced in 2008 in Business Model Generation
book.

How to use it

The audience

Your audience really depends on the purpose. You can visualise the business model with the
company’s business development team to work out a business strategy, or you might want to map
out the business model with dev teams around you in order for everyone to be aware with the
business domain they are working on. Business Model Canvas can be also very powerful when just
using it to understand a specific project’s scope or team’s behaviour. Or even if you want to assess
how an upcoming feature / epic is aligned with the business.

The timing

You can do a workshop on Business Modelling any time. But I would definitely recommend it in the
following situations:

• When a business unit changes around you
• when the organisation changes and it affects the business unit in which you work / deliver

value
• When you want the dev team/s to be aware with the business model
• When there is a new project and you want to see how it will work out (this is a completely

new approach)
• When you want to do a fun team building whilst learning and modelling together (like doing

the BMC even for a fake business will give you a chance to have an engaging session with the
team)

In terms of the lengths I would aim at least an hour long session (which probably will have outcomes
also like questions, assumptions and ToBeDiscussed items).

Visual Collaboration Tools 38

Content

Business Model Canvas has 9 sections that can really describe any companies from the smallest to
the largest. These 9 sections are the followings:

• Customer Segments: To whom do I add value? Who are my most important customers?
• Value Proposition: What problem do I solve for my customers? Why do my customers pay for

my product?
• Channels: How do I sell and deliver the product?
• Customer Relationship: How do I signal changing customer needs? How do I stay top of mind?
• Revenue Streams: What are the main sources of revenue?

These 5 above are all the aspects of a business that the customers can see.

The following 4 are all the internal organisational aspects of the business:

• Key Activities: What are the most valuable activities to provide the value proposition?
• Key Partners: Who are the key partners without whom my business wouldn’t run?
• Key Resources: What are the most valuable resources?
• Cost Structure: What are the main costs to create value?

Running a BMC workshop

1. Discuss the goal and the business you are going to work on with the audience. If you are doing
it with a fake business, put a mission statement together and also give the business a name so
making it easier to relate to that during the workshop.

2. Explain BMC and what each section means.
3. Draw the BMC frame on a whiteboard.
4. Let people have their own thoughts come to the surface first so leave time for them to

individually write down ideas on post-its (to any section of the BMC).
5. Then ask people to put their post-its into the proper section of the BMC. Spend a little bit of

time on merging the duplicates (when people wrote the same thing basically).
6. Start discussing the canvas and put up other ideas, thoughts together.

I would recommend to go from the customer segment: whom do I add value? From here you can
continue with the value proposition: what value do I add to which customer segment. It worth to
have the same colour for the corresponding customer segment and its value proposition.

7. It is very important to capture your questions in the meanwhile (usually on pink post-its) and
mark everything that is an assumption in the BMC. These are very valuable results that you
can take away and discuss / clarify with the appropriate people.

Visual Collaboration Tools 39

Why?

The goal is that you can learn about the business’ model so you can make sure you know and
understand how you can create value for your company, how you contribute to the business’ success
and you also can solve problems for them in a much more effective way.
It is really not about asking for requirements any more but you need to actively contribute in business
success.

Authors, attribution and citations

Alexander Osterwalder and Yves Pigneur - authors of Business Model Generation book

Zsofia Herendi (@ZHerendi²⁷) - contributed this article.

²⁷https://twitter.com/ZHerendi

https://twitter.com/ZHerendi
https://twitter.com/ZHerendi

Visual Collaboration Tools 40

Context Mapping

What is made possible

The Context Map represents a holistic view of the supply and service relationships between Bounded
Contexts and the corresponding teams. Large parts of the enterprise architecture concentrate
primarily on call relationships between systems. They show which systems offer which services as
providers, they also show which consumers call these services. Also, there is sometimes a technical
consideration of these relationships. For example, it is often indicated whether an interface is a
RESTful resource or a SOAP WebService. Integration middleware such as Messaging Brokers or
Enterprise Service Buses (ESBs) finds their way into those diagrams. The Context Map digs deeper
into those relationships and ignores most of those technical aspects. It is, therefore, an addition to
diagrams explaining call relationships and not an alternative to them. In my experience, the Context
Map helps in the following areas by making implicitly hidden complexity explicitly visible in less
obvious areas of communication between Bounded Contexts:

• Power and influence relationships between teams
• Propagation of domain models
• Governance aspects

How to use it

This part of the chapter is dedicated to the practical application of Context Maps. Although both
Eric Evans and Vaughn Vernon primarily speak of applicability to already existing systems, I think
that you can also apply the Context Map to newly developed systems.

Open-host Service

We often identify Bounded Contexts that offer services to a variety of consumers. Of course, it
makes little sense to implement a separate service for each of these consumers and to translate the
model specifically for each of them. It, therefore, makes sense to provide a uniform interface for
all consumers. Each client must integrate against this interface. Eric Evans defines the Open-host
service in his DDD Reference as follows:

“Define a protocol that gives access to your subsystem as a set of services. Open the protocol so that
all who need to integrate with you can use it.”

The most important features of an Open-host service are:

• One interface for all consumers
• The interface is ideally implemented via a generally callable API (WebService, RESTful

resource, ..).

Visual Collaboration Tools 41

A public API is an excellent example of an Open-host Service. Please note, however, that the
Open-host service does not make any statements about whether this interface is synchronous or
asynchronous in character. One can also regard the publishing of generally relevant events as an
Open-host Service.

Conformist

The Conformist is all about model propagation: the model of another Bounded Context / Team
propagates into the domain model of another Bounded Context. The existing Domain-driven Design
literature often speaks of the Conformist as a possible solution for tricky situations “in which the
upstream has no motivation to provide for the downstream team’s needs” and in which “an interface
tailored to the needs of the downstream team is not in the cards” (from the DDD Reference)

Even though I can entirely understand the motivation from Eric’s blue book and think it’s right, I
believe that the Conformist can be viewed more extensively. First of all, we should be clear about
what possible motivations there are for becoming a Conformist.

One possible reason is convenience. This reason is also very explicitly mentioned in the existing
literature. The downstream team “eliminates the complexity of translation between Bounded
Contexts by slavishly adhering to the model of the upstream team” (from the DDD Reference).

A downstream team can also be forced to become a Conformist. This constraint can come either
through API Terms of Use Agreements or through general enterprise architecture rules. In the case
of Terms of Use Agreements, consumers of mostly commercial APIs are forced to adhere to the
given model slavishly. Corresponding passages in user contracts explicitly forbid client developers
to change the structure of the data used. Although such things rarely occur in reality, I have been
confronted with such restrictions several times during my career as a developer and architect. The
second type of “coercion to Conformist” usually comes from within, generally from the direction
of central business architecture governance boards. They force downstream teams to use upstream
models, especially if they are part of an enterprise-wide model.

The last reason to be a Conformist is of a voluntary nature. The downstream team considers the
model of the upstream side to be incredibly useful and suitable. It, therefore, adapts to the model
out of conviction rather than convenience.

I think that all these reasons to be a Conformist are valid, even if they are not mentioned to this
extent in the literature. However, the result does not change: a Conformist is downstream and it
slavishly adapts to an external model coming from an upstream team.

When mapping existing systems, the Conformist provides valuable insights into how the individual
systems are interwoven with each other and how models propagate themselves in this network.
When using the Context Map Patterns in upfront design, I recommend using the Conformist only
when a team is convinced of the quality of an external model or when it is desired to significantly
constrain a team’s position of influence.

Visual Collaboration Tools 42

Anticorruption Layer

Let’s be honest: most models of historically (and sometimes also hysterically) grown legacy systems
are horrible. They are not very expressive; they are mostly very fragmented and can often only
be understood with a good deal of knowledge about the internals and the domain of these legacy
systems. In an ideal world, nobody wants to pull these models into her application in the form of a
Conformist.

For this reason, there is the Anticorruption Layer. The task of this pattern is to translate an
external model coming from the upstream into a “new” internal model at the downstream level.
The complexity of such a translation naturally depends strongly on the respective requirements.
There are quite simple Anticorruption Layers that don’t even deserve the name Layer. However,
it is also possible to create very sophisticated Anticorruption Layers. Especially with challenging
demands on the Anticorruption Layer, it doesn’t do any harm to take a look at the Facade Design
Pattern from the Gang Of Four book. On Wikipedia it is explained as follows:

“Developers often use the facade design pattern when a system is very complex or difficult to
understand because the system has a large number of interdependent classes or because its source
code is unavailable. This pattern hides the complexities of the larger system and provides a simpler
interface to the client. It typically involves a single wrapper class that contains a set of members
required by the client. These members access the system on behalf of the facade client and hide the
implementation details.”

The Anticorruption Layer is, in any case, a recommended pattern, as it significantly reduces the
coupling between two systems. Of course, there is still a dependency on the upstream model in the
downstream. However, this dependency does not run through the downstream system as a whole
but is isolated within the Anticorruption Layer. This approach makes model adjustments easier to
implement, as only the Anticorruption Layer has to be adjusted. Also, these changes entail less risk
as the external upstream model is treated in isolation within the Anticorruption Layer. Finally, one
can also test an Anticorruption Layer with the help of dedicated unit tests and check for correct
functioning. Integration tests can, therefore, concentrate on the actual challenges of integration.

When mapping system landscapes, the Anticorruption Layer shows interruptions in the model
flow, which indicate a lower coupling between two systems. You can find this pattern in the
code. It is eventually a very technical pattern. When using Context Maps for an upfront design,
I always recommend an Anticorruption Layer if you think the external model is too complicated or
inappropriate and are not forced to be a Conformist.

Customer/Supplier Development

The Customer/Supplier Development Pattern is a tricky one with regards to the existing literature.
The introduction of the chapter in the DDD Reference describes possible starting situations that are
bad:

“A downstream team can be helpless, at the mercy of upstream priorities. Meanwhile, the upstream
team may be inhibited, worried about breaking downstream systems. The problems of the down-
stream team are not improved by cumbersome change request procedures with complex approval

Visual Collaboration Tools 43

processes. And the freewheeling development of the upstream team will stop if the downstream team
has veto power over changes.”

The actual pattern, on the other hand, speaks of a somewhat intact world in which the upstream
team still has the upper hand, but the downstream side has some influence. The DDD Reference
speaks of the fact that priorities of the downstream team are taken into account in the planning of
the upstream team. The whole approach goes so far that requirements made by the downstream side
are budgeted and taken into account in the planning of the upstream team. The pattern explicitly
mentions everyone understanding the commitment and schedule.

If you work in an agile environment, you can put the downstream team in a customer role towards
the upstream side. Customers make demands to the supplier, and these demands are discussed
together in planning sessions and scheduled on a timeline.

Shared Kernel

The Shared Kernel is about two teams sharing a part of the model. Such a Shared Kernel can be a
JAR dependency, a database schema or a DLL. In contrast to a general interface description such as a
WSDL or a Swagger definition, the Shared Kernel is a “tangible artifact”. At this point I would like to
explicitly point out that a shared database is a Shared Kernel. This manifestation can be found very
regularly in grown, monolithic applications and often represents a substantial problem in these.

With the help of a Shared Kernel, the affected teams naturally save a lot of integration and translation
work, but it comes with a very tight coupling. This coupling is stronger than that of a Conformist,
since the Shared Kernel, for example in the case of a JAR library containing a model, amounts to
binary compatibility.

Is a Shared Kernel a good or a bad pattern? The answer to that is, as so often, “it depends.” In a new,
modern system-of-systems that follows the microservices idea, a Shared Kernel would be a bad idea.
We would like to explicitly focus on the highest possible decoupling in such a system architecture
between the individual teams and their systems. In the case of a grown system, it all depends on how
the different teams deal with the Shared Kernel. Some of them make sure that the shared artifact
is as small and long-term as possible. In this case, the Shared Kernel is not a significant problem in
daily project work. However, I have also experienced several unpleasant conflicts between teams
around such shared artifacts. This is particularly the case if the two groups are strongly separated
organizationally (e.g., between teams of two competing external vendors). In such cases, the Shared
Kernel becomes toxic and must be dissolved urgently. I would also like to mark such Shared Kernels
extra when analyzing existing landscapes. I use an additional label here.

Published Language

A Published Language is a data exchange format used between different Bounded Contexts. This
format must be well documented and designed so that individual Bounded Contexts can easily
translate from their own (internal) Ubiquitous Language to the (external) Published Language. A
translation should also be possible in the reverse direction. Eric Evans emphasizes in his DDD

Visual Collaboration Tools 44

Reference that a Published Language is used as a data exchange format (mostly designed by
committees) in numerous industries. Most readers of this article will undoubtedly have come into
contact with two prevalent Published Languages on their smartphone or tablet. The VCard, a file
format standard for electronic business cards, or the iCalendar, a “MIME type which allows users to
store and exchange calendaring and scheduling information such as events, to-dos, journal entries,
and free/busy information.”

Both, the VCard or the iCalendar are perfect examples since they are widely used, they are well
documented, they have their own language, and there is a committee for their further development.

The Published Language is an exquisite way to decouple Bounded Contexts from each other. Each
Bounded Context can implement it in its way. As long as the translation between the internal model
and the model of the Published Language model works, the teams of the Bounded Contexts have all
the freedom to find their own solutions.

Separate Ways

The basic statement of the Separate Ways pattern is that one Bounded Context has no points of
contact with another. The motivation for this can be, for example, that the costs for integration are
in no relation to the benefit. That’s a very conscious decision then. Another application for Separate
Ways is uncertainty in my eyes. If you don’t know how the number of users of a system will increase
in the beginning, you can initially choose a minimum viable product without specific integration
efforts and establish an organizational solution. Integration can then take place later at any time
when the organizational solution reaches its limits in terms of scalability. Usually, you will then
know better about the exact integration requirements and can develop a tailor-made solution.

The two scenarios described above are particularly interesting if you are implementing a new system.
However, it is also good to know where such organizational solutions are present when analyzing
existing application landscapes. Especially when cartographing software applications used in call
centers, I regularly observe that the agents working there do not have a perfectly integrated and
media-break-free application. In contrast: here, Copy & Paste is often used to manually “integrate”
between different applications. Especially when planning IT transformations, the knowledge of
where work is done manually between applications is precious.

Big Ball Of Mud

Big Ball Of Mud is only geared towards context mapping of already existing systems. When
designing new systems or system landscapes, it would be very awkward to create a Big Ball Of
Mud consciously.

The Big Ball Of Mud is primarily a feature that marks a part of a model or even an entire system.
Such a section is characterized by the fact that its models are difficult to understand, unclear and
branched arbitrarily. It is impossible to draw clear dividing lines somewhere in such a spaghetti
model. Definitions and rules are contradictory and ambiguous in such an environment. Usually,
these are parts of a system or a system group that nobody wants to touch anymore because the
implications of changes are not foreseeable.

Visual Collaboration Tools 45

For this reason, it is recommended to draw a border around this area to mark it as a Big Ball Of
Mud. It would be best if you took rigorous care that models or individual elements of them do not
propagate themselves further. For example, a Conformist on the model from the Big Ball Of Mud
would undoubtedly be a critical finding when analyzing a Context Map. The same applies to Shared
Kernels, which are shared with Big Balls Of Mud. In contrast, the Anticorruption Layer would be a
suitable means to delimit the model of one’s Bounded Context against that of a Big Ball Of Mud.

Partnership

Also, the Partnership pattern is not included in the blue Domain-driven Design book by Eric Evans.
Vaughn Vernon introduced it in his (red) book Implementing Domain-driven Design. Just like the
Big Ball Of Mud, the partnership pattern is primarily a trait. However, this is not a characteristic of
a system or a part of a system, but it is instead a description of how two teams deal with each other.

The partnership describes close cooperation between two teams. This cooperation includes coor-
dination of development planning and close coordination of mutual integration. The coordination
of design and integration of interfaces is of central importance. This joint alignment may end in
a joint coordinated release if necessary which results in a very close coupling between the teams
involved. However, you should pay attention to the fact that this coupling does not end in overly
generic models. Developers would accumulate much detailed knowledge about the business model
of the other team, which in turn considerably increases the reciprocal coupling. Mutual willingness
to compromise and empathy are necessary for solving problems to find quick and targeted design
solutions.

The establishment of a partnership makes sense when the success of both teams depends on each
other. A cooperative relationship is therefore desirable when teams in two contexts will either
succeed together or fail together.

Drawing Context Maps

There is no formal definition for the graphical representation of Context Maps. Also, the existing,
notable literature only rudimentarily indicates some possible graphic notation possibilities. This
chapter is primarily based on the representation used by Alberto Brandolini and Vaughn Vernon,
and I would like to try to present it as comprehensively as possible. However, I will take the liberty
of adding a few details.

In this notation, I usually use circles or ellipses to represent Bounded Contexts. Within this form is the
name of the context. I mark upstream and downstream as labeled squares next to the contexts. I know
of arrows used for this, but this is often misinterpreted as call flow and leads to misunderstandings.

Visual Collaboration Tools 46

Two Bounded Contexts in an Upstream Downstream relationship

The individual patterns are labeled as squares and attached to (rather than next to) the Bounded
Context. Here, for example, we see one that is upstream and implements an Open-host Service.

An upstream Bounded Context providing an Open-host Service

In the meantime, the following abbreviations have been established for the labels in the practical
work I have observed:

• Open-host Service: OHS
• Conformist: CF
• Anticorruption Layer: ACL
• Customer / Supplier Development: CUS and SUP (depending on up- and downstream)
• Shared Kernel: SK
• Separate Ways: SW
• Published Language: PL
• Big Ball Of Mud: BBOM
• Partnership: there is no clear trend, I usually use the full term in my work

The advantage of this form of notation is that the individual elements can easily be combined to
represent relationships in a holistic way. Here are a few examples:

Visual Collaboration Tools 47

An upstream Bounded Context providing an Open-host Service with an Anticorruption Layer on the downstream

An upstream Bounded Context providing an Open-host Service which transports a Published Language with a
Conformist (on the Published Language) on the downstream

Two Bounded Contexts with a Shared Kernel

Visual Collaboration Tools 48

Context Map Cheat Sheet

Visual Collaboration Tools 49

Why?

Context Maps help us in getting a better understanding about the dependencies between teams and
Bounded Contexts. Thereby they address a variety of aspects:

• The flow of domain models between Bounded Contexts (Conformist for instance)
• The power dynamics between teams (Customer Supplier for instance)
• How functionality gets provided within a problem domain (see Open-Host Service)

By doing so Context Maps are a powerful tool for:

• Planning modernizations of grown application landscapes
• Establishing a decentralized governance model without boards, which become bottelnecks
• Detecting risks by knowing how models propagate

Authors, attribution and citations

Evans, Eric (2003): Domain-driven Design, Addison Wesley

Vaughn, Vernon (2013): Implementing Domain-driven Design, Addison Wesley

Evans, Eric (2015): DDD Reference https://domainlanguage.com/ddd/reference/²⁸

Alberto Brandolini - Strategic Domain Driven Design with Context Mapping https://www.infoq.com/articles/ddd-
contextmapping²⁹

Wikipedia: Conway’s Law https://en.wikipedia.org/wiki/Conway%27s_law³⁰

DDD-Crew Github Context Mapping³¹

Michael Plöd(@bitboss³²) - contributed this article.

²⁸https://domainlanguage.com/ddd/reference/
²⁹https://www.infoq.com/articles/ddd-contextmapping
³⁰https://en.wikipedia.org/wiki/Conway%27s_law
³¹https://github.com/ddd-crew/context-mapping
³²https://twitter.com/bitboss

https://domainlanguage.com/ddd/reference/
https://www.infoq.com/articles/ddd-contextmapping
https://www.infoq.com/articles/ddd-contextmapping
https://en.wikipedia.org/wiki/Conway's_law
https://github.com/ddd-crew/context-mapping
https://twitter.com/bitboss
https://domainlanguage.com/ddd/reference/
https://www.infoq.com/articles/ddd-contextmapping
https://en.wikipedia.org/wiki/Conway's_law
https://github.com/ddd-crew/context-mapping
https://twitter.com/bitboss

Visual Collaboration Tools 50

Decision Log

What is made possible

As a facilitator of visual meetings, I usually find myself helping teams across different sessions. I
observed that it could cause friction when teams need to revisit past decisions, leading to arguments
about those decisions. Inspired on the pattern out of Living Documentation³³ book, I created a
visualisation call Decision Log.

How to use it

For this simple visualisation, you need a flipchart and a few stickies. For every decision made by
the team during a visual meeting, record it. Use the date as an anchor, and it helps the teams
remembering the context.

³³https://www.amazon.com/Living-Documentation-Cyrille-Martraire/dp/0134689321

https://www.amazon.com/Living-Documentation-Cyrille-Martraire/dp/0134689321
https://www.amazon.com/Living-Documentation-Cyrille-Martraire/dp/0134689321

Visual Collaboration Tools 51

Example of a Decision Log. All rights reserved

I also advise the teams to record the decisions in a durable format. For that, they can use the

Visual Collaboration Tools 52

Architectural Decision Records³⁴ and treat the decisions as code.

Why?

The main driver for the Decision Log is to have a positive discussion rather than a rehash of it. The
path to a decision is essential, and this visualisation gives more details on why some decisions are
made.

Especially during the discovery of software (you can think about new teams, as for example), the
teams can make conscious decisions about what is in, and what is out, speeding up the process.

Authors, attribution and citations

This article was written by João Rosa³⁵. He is a Strategic Software Delivery Consultant at Xebia,
specialised into helping companies to leverage the power of technology to drive their business.

³⁴https://adr.github.io/
³⁵https://twitter.com/joaoasrosa

https://adr.github.io/
https://twitter.com/joaoasrosa
https://adr.github.io/
https://twitter.com/joaoasrosa

Visual Collaboration Tools 53

Domain Quiz

What is made possible

Domain Quiz is a relative short assessment of teams’ current domain knowledge followed by a
common evaluation session. It is also another fun way of learning about the domain.

How to use it

The audience

Your audience really depends on the purpose. You can do a quiz with your team, with individuals
who are for instance stakeholders in a project and working towards the same goal, you can do it with
the management even. Or do cross bounded context quiz with multiple teams and you can make it
a competition at your company.
You can decide whether or not you do anonym quiz. I would recommend the anonym one, as
according to my experiences people are more relaxed if they know that their names won’t be there
attached to their results.

The timing

You can do the quiz anytime! I don’t think it is something that needs to be done around milestones
or in specific sprints or quarters. Anytime, when it makes sense and what is maybe more important:
do it regularly.

In terms of the lengths I would aim not longer quiz than 20 mins (which probably means 10–15
multiple-choice questions max).

Content

I think this is the hardest part because this is really dependent on the context. What I can do here is
to provide you some guidelines for putting the questions together:

• Definitely ask about the end users of your system. But don’t ask like “Who is our end user?”
but ask like “Who is the persona we provide the most value for?”

• Ask about the value, ask why users are using your product or why they are part of the certain
domain flow.

• If there are specific feature sets or functionality groups you want to find out your team’s domain
awareness about, go ahead and ask about those specifically. If there are reports or analytics or
some special calculations in the domain eco-system it might be good to include that too.

Visual Collaboration Tools 54

Evaluation and findings

You should analyze group results and look at the weakest areas where the team really needs
improvement. You should do common session/s with the team after you analyzed the results to
address these areas together.
It doesn’t matter whether you do the quiz online or on paper, the evaluation together with the team
needs to happen. That’s the main point in it, that’s where everyone can learn the most.

More hints and tips

• Emphasize the goal! Always emphasize that this is not about individual results and punish-
ment. When people hear words like “quiz” many of them think it is some assessment to judge
them and there will be consequences if they don’t do 100%.

• Spend time on preparation! Send out the domain areas in advance so giving the opportunity
for people to learn. If you will have a prize, make sure you mention this beforehand, they
will be more eager to learn and prepare. Even with this the team’s domain knowledge can be
improved already.

• Do follow-up! And what you shouldn’t forget is that you need to quite regularly do a domain
quiz to see the awareness with the updates and changes in the domain. This means more work
for you because it is not about having the same domain quiz all the time but you always need to
come up with new questions. But obviously 2–3–4 questions are totally enough as a follow-up
if you’ve already made sure earlier that the basic domain knowledge is there and now you just
want to assess the awareness with the newer things.

• Make it fun, add prize! Prize can be anything, a small thing like a piece of chocolate or even
some bigger things like half a day off or anything like that, it depends how much you want to
motivate people and how important it is for you to learn about the domain awareness.

Tools

I’m sure there are plenty of tools you can put a quiz together with. I usually use Google Forms
as I’m very satisfied with its behaviour. It is very easy and quick to put the quiz together (after
you’ve already done the hardest part: figuring out the questions), I really like that I can do feedback
(whenever someone submits the quiz they immediately see the feedback about correct and incorrect
answers and the reasoning behind that I provide).
No matter what tool you use, always make sure…
that you provide feedback at the time of the submission
you provide reasoning both for correct and incorrect answers
the answers are not predictable
you test it thoroughly in advance — send yourself the link and fill in the quiz and check the feedback
etc. before you send out to your people. Step in the team’s shoes and try to think how will they feel
when they see that particular feedback or question.

Visual Collaboration Tools 55

Example

You can find a very basic example here³⁶ just to show that it is nothing more difficult than a basic
questionnaire. The content makes it unique that supposed to be obviously your domain.

Why?

The goal is that you want to learn about your team’s (or colleagues, etc.) current domain awareness
in order for you to know where to improve it.
In order to design great architecture dev teams need to know the domain. And domain experts need
to realise if team doesn’t have the knowledge, identify the areas where improvement needed and
create an action plan for it.
The reason why you might want to learn more about the level of people’s domain knowledge may
vary. Some of the clues can be like:

• you simply get too many questions from the team on how things work
• many times the features don’t even pass the dev test phase
• you realize that QA spends too much time with testing even if there is some simple improve-

ment made in the system
• when you are not available people ask the team about the system behavior and they have no

idea about that
• there is a specific feature you need to design and implement with the team, but first you want

to have an understanding on the team’s awareness about that area in the system
• etc.

Authors, attribution and citations

Zsofia Herendi (@ZHerendi³⁷) - Author of this article

³⁶https://docs.google.com/forms/d/e/1FAIpQLSeXK2_TTCkPYwobNgDVn0DvZhShm_jO_8gg2Dtqk3HHxx6Wuw/viewform
³⁷https://twitter.com/ZHerendi

https://docs.google.com/forms/d/e/1FAIpQLSeXK2_TTCkPYwobNgDVn0DvZhShm_jO_8gg2Dtqk3HHxx6Wuw/viewform
https://twitter.com/ZHerendi
https://docs.google.com/forms/d/e/1FAIpQLSeXK2_TTCkPYwobNgDVn0DvZhShm_jO_8gg2Dtqk3HHxx6Wuw/viewform
https://twitter.com/ZHerendi

Visual Collaboration Tools 56

Domain Storytelling

Domain Storytelling is a collaborative modeling technique that highlights how people work together.
Its primary purpose is to transform domain knowledge into business software. This purpose is
achieved by bringing together people from different backgrounds and allowing them to learn from
each other by telling and visualizing stories.

Telling stories is a basic form of human communication. It is deeply rooted in all of us since the times
our ancestors lived in caves. In our modern world, telling a story might seem archaic or childish.
How can an activity so informal help us to build business-critical software for domains such as
logistics, car manufacturing, e-commerce, and banking?

We believe that conversations cannot be adequately replaced by written, formal specifications.
Attempts to do so have even widened the gap between business and software development.
But that is not just our personal opinion. Consider software development approaches like agile,
Domain-Driven Design, or Behavior-Driven Development. These philosophies focus on feedback
and stakeholder involvement. Nevertheless, making great business software is hard, but rarely is
this because of technical problems. So why then? Because software developers need to understand
how the day-to-day business operates. They need to become domain experts themselves—not for
the whole domain but at least for the part they build software for.

Telling stories still works in the age of software. In our experience, telling and listening to stories
helps with the following:

• Understanding a domain
• Establishing a shared language between domain experts and IT experts
• Overcoming misunderstandings
• Clarifying software requirements
• Implementing the right software
• Structuring that software
• Designing viable, software-supported business processes

Telling stories is a means for transporting domain knowledge from the heads of domain experts into
the heads of developers, testers, product owners, product managers, business analysts—anyone who
is involved in developing software. Of course, we do not sit around campfires in dark and damp caves
anymore. We share our stories while we meet in front of a whiteboard in a workshop. The domain
experts are our storytellers. We want them to tell us the true stories from the trenches—no abstract
“ifs,” no hypothetical “coulds.” We want concrete and real examples of what actually happens in the
domain. We want domain stories.

A First Example

At an airport, you have probably waited for a bus to take you from the gate to the plane. Have you
ever wondered how the bus transfer is organized and why it can take so long? There are still airports
where a bus transfer requires many manual steps:

Visual Collaboration Tools 57

Let’s start from the simplest case—only one bus is needed for the transfer. At the departure gate,
the gate agent (the person who handles the boarding) calls a bus dispatcher. The gate agent orders
a transport and specifies the number of passengers (called PAX), the departure gate, the flight, and
the position where the airplane is parked. The bus dispatcher creates an order in her bus scheduling
system. She gives this order by telephone to a bus driver. The bus driver then knows how many
passengers he has to bring from A to B and when. But the job is not yet done. After the transport, the
bus driver logs the details of the journey (including how many passengers were actually transported
and whether there were any irregularities on the way). The bus driver notes all this by hand. Only
now can he accept the next order. At the end of the shift, the bus driver submits the collected logs
to the bus dispatcher, who then enters the details of each transport into the corresponding order in
the bus scheduling system.

Imagine that instead of reading the above text, a gate agent, a bus dispatcher and a bus driver tell
you this story. And imagine that at the same time someone draws the picture (see below) on a
whiteboard. That is your first domain story!

Driving passengers from gate to runway.

Visual Collaboration Tools 58

How to use it

Domain Storytelling combines a pictographic language with a workshop format. While each has
value on its own, it is their combination that makes Domain Storytelling work so well. We will start
with the graphical notation.

The Pictographic Language

To record domain stories visually, you need a set of building blocks (icons, arrows, and text) and
rules for combining the building blocks to sentences:

• Actors: Domain stories are told from an actor’s perspective. An actor can be a person (for
example, “bus dispatcher”), a group of people (“passengers”), or a software system (“bus
scheduling”). We use different icons to represent those different kinds of actors. What actors
have in common is that they play an active role in the domain story. The icons are all labeled
with a term from the domain language. Note that we usually label actors with their role or
function rather than a person’s name. However, in some situations you may find it useful to
make an exception to that rule and use concrete persons or personas as actors.

• Work objects: Actors create, work with, and exchange work objects such as documents,
physical things, and digital objects. They also exchange information about work objects. The
pictographic language does not distinguish between work objects and information. Hence, an
icon can represent the actual work object itself (e.g., a bus order on a slip of paper), a virtual
representation of the bus order (e.g., a digital bus order created by a software system), and the
medium through which information about the work object is exchanged (e.g., a phone call).
Like actors, the work objects are labeled with a term from the domain language (like “order,”
“transport,” etc.). Note that a work object can have different iconswithin the same domain story
if the medium changes. For example, an order can be modeled using a document icon when it
is entered into a system, and with a phone icon when bus dispatcher and bus driver talk about
an order.

• Activities: The actors’ activities are shown as arrows and labeled with verbs from the domain
language (e.g., “order,” “assigns,”). Note: Actors and work objects are nouns, and activities are
verbs.

• Sequence numbers: To tell a story, you need more than one sentence. Since stories are told
one sentence after the other, the sentences can be brought into an order by numbering them.
We usually number the sentences by adding a sequence number to the origin of the arrow that
represents an activity. In most cases, we number the activities consecutively, which means we
use every number exactly once. Sometimes it makes sense to express that activities happen
concurrently. If that is the case, we label the parallel activities with the same number. We
recommend using this special case sparingly because it makes the sentences harder to read and
weakens the story. If possible, agree on an exemplary order and use parallel activities only if
it is really important for the story. We number a sentence while modeling it (as opposed to
numbering all sentences at the end of modeling). This makes it easier to keep track of the story.
However, the domain experts do not always get the sequence right the first time. Sometimes,

Visual Collaboration Tools 59

sentences need to be inserted afterward, or the sequence has to be changed. Then, the sentences
need to be renumbered.

• Annotations: The pictographic sentences are complemented by textual annotations. Where
necessary, we annotate information about variations (other cases, optional activities, possible
errors). Also, it can be useful to annotate the goal of an activity. We use annotations to
explain terms from the domain language, and to document assumptions or anything else that
is noteworthy.

• Modeling canvas: To draw a domain story, you will need some kind of modeling canvas to
draw it onto. It doesn’t have to be an actual canvas but can be a piece of paper, a whiteboard,
etc. Also, it could be analog or digital. A typical first step is to give the domain story a name
and to put it on the canvas. This will set the frame for the story told. The name may be revised
and refined as the story evolves.

• Groups: A group clusters parts of a story that somehow belong together and is represented as
an outline. The group can take any form, for example a rectangle, a circle, or a free-form shape.
To describe the meaning of a group, label it accordingly. Here are some examples of what can
be expressed by groups:
– Activities that are repeated
– Activities that are optional
– Parts of the story taking place in different locations
– Organizational boundaries
– Subdomains

Activities connect actors and work objects to form sentences. Every sentence starts with an actor
who initiates an activity: who (actor) does what (activity) with what (work objects) with whom
(other actors). The basic syntax is: subject – predicate – object. More complex syntax is allowed as
well. The following figure shows a list of grammatically correct sentences for a domain story.

Visual Collaboration Tools 60

Possible sentence structures

The sentences can be read as follows:

1. Actor A works on work object w (creates it, buys it, processes it, looks something up in it …).
2. Actor A works on work object w to edit work object v.
3. Actor A hands work object w over to actor B, or A exchanges information about w with B.

Often, a preposition (e.g., to, with, in) is a fitting label for the second arrow.
4. This is the same as sentence 3 but with several recipients.
5. The two actors A and B collaborate on w (sign it, agree on it…).

Visual Collaboration Tools 61

Scenario-based Modeling

The pictographic language does not contain symbols for conditionals, variations, or alternatives.
They are intentionally left out. This is a big difference compared to many other modeling approaches
for business processes. With Domain Storytelling, you model just the most important alternatives—
each one as an individual domain story, told from beginning to end.

Every Domain Story is about a concrete, meaningful example of a business process. Usually very
few domain stories are enough to grasp a business process. We recommend that you start modeling
the standard case—the 80% case—and the happy path first. That should give you a general idea of
the purpose of the process. It will help you to understand why the actors are doing all this. Narrow
the case down—no exceptions, no errors, the sun is shining, everything is fine. Later, you can ask
what could go wrong and you can model important variations and error cases as separate domain
stories.

Small variations in a business process such as optional activities are simply not worth the effort of
modeling them separately. Instead, you should use annotations.

In some domains, it can be difficult to identify scenarios like “typical case” and “happy path.” In
such situations, we recommend a different approach. Try to model several past cases with increasing
complexity: a simple case, a moderately difficult case, and a difficult case.

Preparing the Workshop

The time you can spend with domain experts is usually scarce. A bit of planning may therefore be
in order to make the workshop an exciting experience for everyone and to achieve a good result.

The workshop brings together what belongs together: people who want to exchange knowledge
using Domain Storytelling for a specific purpose. The purpose determines the granularity of the
stories and affects the mix of participants.

When we are brought into an organization to moderate a Domain Storytelling workshop, it is usually
because one person (from business or IT) has invited us. Let’s call that person the host. The host is
the one who organizes the meeting and invites the participants. The host usually has some idea of
what should be modeled. In our experience, however, certain questions and topics will always be
important. A moderator can help the host by asking questions like these:

• What questions need to be answered?
• What are the biggest problems?
• Who is involved currently to try to solve these problems?
• Whose perspectives need to be considered? Who should be involved in the host’s opinion?
• Which key activities are at the core of the organization?

The host and the moderator should then clarify key activities, use cases, or business processes they
want to cover. In a workshop, not just one but several domain stories are told and discussed. Decide

Visual Collaboration Tools 62

what the scope (or scopes) of the domain stories should be. Domain Storytelling is not a “one-size-
fits-all” approach. The level of detail that stories have, whether they are descriptive or exploratory,
and the amount of technical information they contain—we call these factors the scope of a domain
story.

Having the right people present is crucial and therefore needs particularly careful consideration.
This is something that Domain Storytelling shares with other collaborative modeling methods.

Who are the right people? In some cases, a single person is able to tell a whole domain story.
But usually, nontrivial business processes require cooperation. Several participants should therefore
contribute so that the domain story embodies the shared understanding of its narrators.

Domain Storytelling is usually a collaborative endeavor.

Do not let yourself be limited by organizational boundaries. Especially for domain stories that cover
business processes from beginning to end on a coarse-grained level, there is usually no single person
who is an expert on the whole process.

In organizations in which the domain knowledge is divided into silos, it is necessary to invite experts
from each silo and get them all to contribute. Gaps and connections between silos will be discovered.

Also, take care to invite real experts—people from the trenches—and not proxies who know the
domain from hearsay. Workshop participants generally include the following:

• Storytellers—people who can share knowledge (often domain experts from several depart-
ments)

• Listeners—people who want to learn (often development teams)
• A moderator and a modeler who facilitate the workshop
• The host

In the end, all participants will take away new insights from the workshop, no matter if they were
invited to share, to learn, or to facilitate.

The Workshop

During the workshop, the moderator needs to steer the storytellers in the right direction to ensure
that their contributions serve the overall purpose. Domain experts are not always born storytellers.
The crucial prerequisite for good storytelling is a skilled storyteller. That’s why the moderator keeps
the participants’ story going by asking questions like these:

• “What happens next?”
• “Where do you get this information?”
• “How do you determine what to do next?”

Visual Collaboration Tools 63

• “How do you do that?”

Engage the participants without imposing your opinion on them. Use the language of the partici-
pants, not your own!

Sometimes, activities seem to lack an obvious purpose. It is important to understand why activities
are carried out in order to later design useful software and processes. The answer as to why
something is done a certain way often reveals serious problems with current processes or how they
are supported by software:

• “That is the way we have always done it.”
• “I don’t know why we do that.”
• “We have been assuming that this is necessary for the folks from the other department.”
• “Because the software forces us to do it this way.”

You might have to ask why repeatedly to get to the bottom of the problem.

As the participants tell their story, the moderator records it graphically—step-by-step, thus deter-
mining the pace of the storytelling. While recording, the moderator should retell the sentence that
they are modeling. To make sure that the actual terms from the domain language are used, confirm
by asking, “Is this the right term?”

When the story seems to be finished, tell the story from the beginning and try to get agreement: Did
we miss something? Is something obviously wrong? Do all domain experts agree with the story?
Revisit the annotations for possible alternative stories. Let the participants decide which ones are
minor variations and which deserve their own domain story. As a moderator, you can stimulate this
discussion with questions like these:

• Are we talking about the same task that is sometimes done differently? Or are we talking about
a different task?

• What would be different if…?
• Am I right that the only difference would be…?

If necessary, model another domain story. Maybe you’ll want to schedule a follow-up workshop to
take a more detailed look at parts of the story or to deal with important variations. If everything went
right, you have now built a common understanding about a relevant part of the domain. However,
you will rarely succeed 100% in bringing the views of several people to one common denominator.
Be careful not to jump to abstractions in order to avoid conflicting views. Instead, use annotations
to bring unresolvable differences to everyone’s attention.

The stories can be captured with different tools; these can be digital or analog. For analog modeling,
a combination of a whiteboard and sticky notes works well. The icons will be drawn on the stickies,
the arrows directly on the whiteboard. This way refactoring can easily done by moving around the
stickies and redrawing the arrows.

Visual Collaboration Tools 64

For digital modeling, a good tool is Egon.io³⁸. It is open source and you can try it online. In the
workshop setting, a projector with connected computer or tablet is needed so that everyone can see
the model.

Why?

Domain Storytelling is a very versatile technique that can be used for a variety of purposes:

• Learn domain language: To build usable business software, you must first understand the
domain. Domain Storytelling can help you to build up domain knowledge. Learning the
language of the domain experts is the most important task because it is the key for effective
conversations about business processes and software requirements. This is especially important
if:
– You are new to a domain (e.g., because you are a contractor) and need to “crunch” domain

knowledge.
– You want to bring together domain experts from different departments to cross department

boundaries and challenge assumptions.
– The software that you are working on does not use real terms from the domain and you

want to change that.
– You work in an organization where no real domain language exists, and you want one to

emerge.
• Finding boundaries: Many domains are too big to be understood and modeled as a whole. In

such cases, you need to break down a domain into manageable units. An important step in this
process is finding the boundaries between subdomains. Domain Stories can help you if:
– You are struggling with a monolith and want to re-organize it or split it into more

manageable parts.
– You want to design microservices or self-contained systems.
– You want to apply Domain-Driven Design (DDD) and have difficulties identifying

bounded contexts.
– Your development team has become too big to work efficiently and you want to split it

into several teams.
– You already have more than one development team and want to find out how you can

organize the work for these teams.
• Working with requirements: Bridging the gap between domain knowledge and requirements

for software development. You can derive written requirements from Domain Stories so that
you can discuss priorities and viable products. Domain Storytelling helps to:
– Find out what the software you build should actually do
– Define User Stories and Use Cases
– Add context to requirements

³⁸http://egon.io

http://egon.io/
http://egon.io/

Visual Collaboration Tools 65

• Modeling in code: If your ultimate goal is to develop software, then, at some point, you need to
move from modeling with sticky notes and diagrams to modeling in programming languages.
Doing that, you should use terms from the domain directly in your code. Domain Storytelling
helps to:
– Implement your domain model as object-oriented code
– Implement your domain model as functional code
– Use DDD’s tactical design

• Support organizational change: The goal of a new software system is usually to make work
easier, faster, more efficient (or in short: better). This goal will not be achieved by digitalizing
bad manual processes. Neither will a pile of requirements magically turn into a seamless
business workflow. To build good business software, you need to go beyond merely modeling
the current situation. You will need to design the future way of working. Domain stories help
to do this and visualize how new software will change the way people work:
– Design how work should be done in the future
– Optimize business processes
– Want to discuss and promote change in business processes
– Have to bring new software into use
– Have to roll out a new version of an existing software

• Deciding Make or Buy and Choosing Off-the-Shelf Software:Not every piece of software is
custom-built. Many domains are supported by off-the-shelf software. Domain stories can help
you to decide wether a new software system should be developed or bought. If the decision is
to buy an existing solution, usually several vendors will offer their products. Here, too, domain
stories can be useful in making a choice:
– Compare different solutions and find out which is the best for your situation
– Make pros and cons of standard software visual

• Find shadow IT: When you are trying to consolidate software application landscapes or
promote digitalization, so-called shadow IT stands in your way. Every company beyond a
certain size uses software that the central IT department is not aware of. All those little
solutions that run in business departments and that hardly anyone knows about are often
business-critical. Domain experts often use shadow IT without even realizing, so it is easily
overlooked. Domain stories can help IT and management find this shadow IT and see the
whole IT landscape.

Tips and Traps

• The icons that you use for actors and work objects should help with creating a clean visual.
When you put together your own set of icons, keep in mind:
– Make sure the icons are distinct enough and simple.
– Using too many different icons will water down your pictographic language.

• The icons should convey meaning and make the domain story more tangible.

Visual Collaboration Tools 66

• In our experience, the pictographic language is more about expressiveness than about adher-
ence to strict rules. However, we think it is useful to show you examples of what we consider
good style and what we consider poor style—at least until you have enough experience to make
your own conscious choices:
– Give every sentence its own work objects. If you reuse them, several arrows will go in and

out of work objects which reduces the readability of the story. Also, you might want to
represent a work object with different icons.

– Make work objects explicit. Sentences can have more than one object in natural languages,
and that is also true for the pictographic language. However, we noticed that Domain
Storytelling novices tend to stick to the basic sentence structure of actor – activity – work
object. If there is a second object involved, they often make it an implicit part of the activity.

– Provide a label for every building block.
– Use different icons for actors and work objects. Even though a concise pictographic

language has its advantages (i.e., fewer icons and meanings to memorize), you should
not go as far as to use the same icon for actors and work objects. This would be confusing
and affect readability.

• The moderator should explain an icon when it first appears in the story: “I will use this phone
icon to show that the gate agent calls the bus dispatcher to order a transport.”

• If something seems noteworthy, make it explicit. Write it down as an annotation. Then, people
can see it, can point to it, can object to it. Making things visible adds quality to the discussion.

• When there are unconnected parts of a domain story (i.e. a “plot hole” between them) it is
usually of interest to ask why.

• When the domain story is finished, the moderator re-tells the story from beginning to end. This
helps to check whether all participants agree on the domain story.

Authors, attribution and citations

This chapter was written by Henning Schwentner and Stefan Hofer. It uses excerpts of their book
Domain Storytelling: A Collaborative, Visual, and Agile Way to Build Domain-Driven Software³⁹,
with kind permission of Addison-Wesley. The book also covers the roots of Domain Storytelling. Its
origins go back to the University of Hamburg where a predecessor of it was developed in the 1990s
and 2000s.

You can find more resources on https://domainstorytelling.org⁴⁰.

³⁹https://domainstorytelling.org/book
⁴⁰https://domainstorytelling.org

https://domainstorytelling.org/book
https://domainstorytelling.org/
https://domainstorytelling.org/book
https://domainstorytelling.org/

Visual Collaboration Tools 67

EventStorming

What is made possible

It is not the domain experts knowledge that goes to production, but the assumptions of
the developers.

— Alberto Brandolini

You can help groups visualise their story and start aligning their mindset to gain new insights quickly.
Due to the adaptive nature of EventStorming (https://EventStorming.com)⁴¹ it allows sophisticated
cross-discipline conversation between stakeholders with different backgrounds, delivering a new
type of collaboration beyond silo and specialisation boundaries. The power of EventStorming resides
in that it has just enough structure to co-create knowledge and solutions. Almost everyone can jump
in and learn EventStorming during a workshop, without any prerequisite knowledge.

While it originally was invented for a workshop to model Domain-driven design aggregates, it now
has a broader spectrum.

How to use it

EventStorming is a perfect fit when you want to visualise and explore a storyline in order to share
knowledge or solve complex problems. Because of the adaptive nature it can be used for different
scenario’s which are fully described in the next chapters. They are:

Official book types:

• Big Picture EventStorming
• Business process modelling (Work in progress)
• Software design (Work in progress)

From the community there are several other examples risen to use EventStorming like:

• EventStorming for planning by Alberto Brandolini (Work in progress)
• Team Flow by Paul Rayner
• Strategic Software delivery by Kenny Baas-Schwegler & Pim Smeets
• Retrospective EventStorming by Alberto Brandolini

⁴¹https://eventstorming.com/

https://eventstorming.com/
https://eventstorming.com/

Visual Collaboration Tools 68

Legend and Glossary

For each specific type of EventStorming we might resuse specific core concepts of EventStorming,
but we might name it slightly different. In this part we describe the core concepts in a glossary and
in each chapter per type you see what concept that specific type uses, and how to name it for that
type. We describe the official colour coding in this book, but you can use your own colour as long
as you are being consistent and visualise it in a legend.

Visual Collaboration Tools 69

Example Big Picture Legend

Visual Collaboration Tools 70

The core concepts are:

Domain Event
A Domain Event is the main concept of EventStorming. It is an event that is relevant for the domain
experts and contextual for the domain that is being explored. A Domain Event is a verb at the past
tense. The official EventStorming colour is orange.

HotSpot
Hotspots are used to visualise and capture hot conflicts. Conflicts caused by, and not exclusive to,
inconsistencies (in language), frictions, questions, dissent, objections, issues or procrastinating going
deep to explore for later. The official EventStorming colour is neon pink and we also slightly pivot
a hotspot when we use it.

Timeline
EventStorming is a powerful tool when we have a story to tell, when we have a timeline. The paper
roll on the wall represents time from left to right. We can have parallel streams from top to bottom
on the paper roll.

Core Concepts

Chaotic Exploration
Chaotic exploration can be used at the start of EventStorming. Each person writes Domain Events
by themselves that they can think off. They will put these Domain Events in order they think they
happen on the paper roll.

Visual Collaboration Tools 71

Enforce the Timeline
A phase happening after chaotic exploration, meaning we try to make the timeline consistent and
remove duplicate stickies.

Big Picture EventStorming

What is made possible

Any organization that designs a system (defined more broadly here than just information
systems),
will inevitably produce a design whose structure is a copy of the organization’s commu-
nication structure.

— Mel Conway

In a larger business domain, people often face individual and collective difficulties understanding
and dealing with complexity. People lose the ability to see the big picture, losing sense of
multiple viewpoints and a shared understanding and vision among the team. During a Big Picture
EventStorming, we put all the relevant people in a room sharing knowledge about what the domain
does. The group continuously crunch knowledge on the domain as a whole, mark hotspots and figure
out together what the next steps will be. We end up with a shared vision of the domain and enough
information to design emergent bounded contexts.

Visual Collaboration Tools 72

Example big picture

Visual Collaboration Tools 73

How to use it

Preparing the workshop

Room setup Credits: EventStorming by Alberto Brandolini

Find a room with a wall of minimal 10 meters width to stick a paper roll on. Use a flip chart as a
legend to update during the workshop. Have enough stickies and markers for the whole team to use,
you need the following (Colours can change if needed):

Big Picture tools

Legend and Glossary

Opportunity
Because a Hotspot can have a negative association we also give people the chance to add
opportunities. We use green because of the association it has with something positive. Start using
Opportunities after we made a consistent timeline.

Visual Collaboration Tools 74

Actor/Agent
Actor or Agent is a group of people, a department, a team or a specific person involved around a
(group of) Domain Event(s). The official colour to use is a small yellow post-it.

System
A system is a deployable IT System used as a solution for a problem in the domain. When we
have finished making the timeline consistent, we can start mapping systems around Domain Events.
There can also be duplicates and it can be anything from using Excel to some microservice. The
official colour is a wide pink post-it.

Value
We can add value like we would do in a value stream map, after we have made the timeline consistent.
We do this to make explicit where the value is in our domain. We use the red and green small stickies
to show positive and negative value.

Pivotal Events
With Pivotal Events, we start looking for the few most significant events in the flow. For an e-
commerce website, they might look like “Article Added to Catalogue”, “Order Placed”, “Order
Shipped”, “Payment Received” and “Order Delivered”. These are often the events with the highest
number of people interested.

Pivotal Events

Swimlanes
Separating the whole flow into horizontal swimlanes, assigned to given actors or departments, is
another tempting option since it improves readability. This seems the most obvious choice for people
with a background in process modelling.

Visual Collaboration Tools 75

Boundaries

Emerging Bounded Context
From a Big Picture EventStorming we can picture Emerging Bounded Contexts. They are the
first indicators of where to start deep-diving towards designing bounded contexts around business
problems.

Emergent bounded context

The workshop

Steps:

1. Explain the participants what EventStorming is, and what a Domain Event is.
2. Chaotic exploration - Let the participant to write down all the Domain Events they can think

of. Ask them to stick them on the paper roll the way they think it should.
3. Enforcing the timeline - Now the participants need to enforce the timeline, making sure events

are in the correct order. Possible duplicate events need to be discussed and if double removed.
Now structure can start to emerge through Key/pivotal events. Between these events smiwlanes
can start to form. Use post-it labels to make these boundaries visible. Capture any problems,
questions, hotspots or conversation points on a pink colored stickies.

4. Explicit walktrough - Once enough structure is emerged, do an explicit walktrough with the
all the participants. Start from the left and let a participant tell the story.

5. Actors and sytems - The entire business flow is now visualised and structured. We can now
add Small long yellow post-it as actors and long pink post-it as systems to the relevant domain
events.

Visual Collaboration Tools 76

6. Opportunities - We don’t only want to show problems, questions, hotspots or conversation
point. We also want to show opportunities. Use the green post-it to add these.

7. Next steps - Give each participant two small long blue post it so they can draw an arrow on.
They can now vote on a different hotspots or opportunity they think is the most important one
to focus on.

Why?

Purposes

• To assess the health of an existing line of business and to discover the most effective areas for
improvements;

• To explore the viability of a new startup business model;
• Creating a shared state of mind of the vision of the domain;
• Input for doing Conway’s law alignment, aligning business models/products to engineering

teams;

Heuristics

• Add more details with invisible conversations⁴²
• Do big picture EventStorming on a single paper roll⁴³
• Don’t be shy on duplicating stickies⁴⁴
• Let everyone pitch there biggest constraint or opportunity⁴⁵
• Make a ceremony of throwing things away⁴⁶
• One (co-)facilitator for every 15 participants⁴⁷
• Only move or remove stickies when discussed with the writer⁴⁸
• Lead by example and remove stickies as facilitator⁴⁹
• Use standing table⁵⁰
• When there is a story to tell, start with EventStorming⁵¹
• Start enforcing the timeline when everyone added their domain events⁵²
• Change language on purpose to change how people think⁵³

⁴²https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
⁴³https://www.dddheuristics.com/guiding-heuristics/eventstorming-do-big-picture-eventstorming-on-a-single-paper-roll/
⁴⁴https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
⁴⁵https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
⁴⁶https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
⁴⁷https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
⁴⁸https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
⁴⁹https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
⁵⁰https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
⁵¹https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
⁵²https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-

events/
⁵³https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/

https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-do-big-picture-eventstorming-on-a-single-paper-roll/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-do-big-picture-eventstorming-on-a-single-paper-roll/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/

Visual Collaboration Tools 77

Authors, attribution and citations

• Alberto Brandolini(@ziobrando⁵⁴)
– Book: Introducing EventStorming⁵⁵
– Website: EventStorming⁵⁶

• Kenny Baas-Schwegler(@kenny_baas⁵⁷) - Contributed to the article
• Book DDD First 15 years⁵⁸ – Discovering Bounded Contexts with EventStorming — Alberto

Brandolini
• DDD-Crew Github EventStorming Glossary & Cheat sheet⁵⁹
• VirtualDDD EventStorming Guiding Heuristics⁶⁰

Business process modelling EventStorming

What is made possible

If I had one hour to save the world, I would spend fifty-five minutes defining the problem
and only five minutes finding the solution.

 — Albert Einstein

A group of people can storm their current process for their product or software application within
a few hours with stakeholders. It gives them the power to create a shared mindset of the status quo,
looking for bottlenecks and inconsistencies. It will pave the to start designing for innovation at the
right place in the process together with stakeholders!

⁵⁴https://twitter.com/ziobrando
⁵⁵https://leanpub.com/introducing_eventstorming
⁵⁶https://eventstorming.com/
⁵⁷https://twitter.com/kenny_baas
⁵⁸https://leanpub.com/ddd_first_15_years
⁵⁹https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
⁶⁰https://www.dddheuristics.com/eventstorming/

https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
https://www.dddheuristics.com/eventstorming/
https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
https://www.dddheuristics.com/eventstorming/

Visual Collaboration Tools 78

How to use it

Room setup Credits: EventStorming by Alberto Brandolini

Find a room with a wall of minimal 5 meters width to stick a paper roll on. Use a flipchart as a
legend to update during the workshop. Have enough stickies and markers for the whole team to use,
you need the following (Colours can change if needed):

Process modelling

Legend and Glossary

Actor/Agent
Actor or Agent is a group of people, a department, a team or a specific person involved around a
(group of) Domain Event(s). The official colour to use is a small yellow post-it.

Policy
A policy is a reaction that says “whenever X happens, we do Y”, eventually ending up with in the
flow between a Domain Event and a Command/action. We use a big lilac post-it for these. A policy

Visual Collaboration Tools 79

can be an automated process or manual. A policy can also be named a reactor, eventual business
constraint or rule or a lie detector because there is always more to policies than you first think.

System
A system is a deployable IT System used as a solution for a problem in the domain. When we
have finished making the timeline consistent, we can start mapping systems around Domain Events.
There can also be duplicates and it can be anything from using Excel to some microservice. The
official colour is a wide pink post-it.

Command/Action
Represents decisions, actions or intent. They can be initiated by an actor or from an automated pro-
cess. During process EventStorming usually, the word “Action” usually fits better with stakeholders
than command because it is easier to grasp. We officially use a blue coloured post-it for it.

Query Model/Information
To make decisions an actor might need information, we capture these in a Query Model. For process
EventStorming information might be more recognised by stakeholders. We officially use a green
post-it to represent a query model.

Enforce colour coding
Enforcing the colour coding is playing EventStorming by the rules. Often used after or during
enforcing the timeline it creates a different dynamic. Below you see the colour coding and how
they are to be used in the flow of the timeline.

Visual Collaboration Tools 80

Process picture

The workshop

Software Design EventStorming is best to do between 3-7 people. When there are more than 8 people
do a split and merge tactic make several groups of 3-7 people and merge before aggregate design.

Visual Collaboration Tools 81

1. Explain to the group the concept of EventStorming and what an Event is in the context of this
workshop. Put the event on the flip chart in order to keep the legend updated

2. Decide the scope of the process. You can do this by placing a Trigger at the start and a Domain
Event at the end of the paper roll, or you can just explain it to the group without making it a
strict boundary and do this later.

Process modelling

3. Start with chaotic exploration of Domain Events that fall between these two Domain Events.
Each person in the team comes up with the Domain Events for themselves in order they think
they will be in.

4. Enforce the timeline were from left to right you try to make a consistent story line of Domain
Events, removing duplicates and adding new ones.

5. Use hotspots for missing knowledge or were complexity is hiding in the story. The goal is to
finish the story first and then dive in deep.

6. Either introduce new EventStorming concepts once they start emerging, or use a hotspot and
do it once the story is finished:

• Start introducing the system and policy concepts.
• Introduce the concept the query model/information.
• Introduce the final concept of action/command and actor.

7. Once the storyline is finished, now introduce all the concept and start to enforce colour coding.

8. Explore the needed edge-cases and their outcomes. Stop when the team has the feeling you have
enough information and you stop learning a lot.

From this finished process model you can do several things:

• Find possible boundaries for different bounded context, and see were the inconsistency with
the current architecture is.

• Start adding value on the process, discovering what positive and negative value there is for the
company and the customer.

• Decide with the group what the biggest bottleneck is.
• Find Domain Events were you can start decoupling the current monolith

Visual Collaboration Tools 82

Why?

Purposes

• To envision new services, that maximise positive outcomes to every party involved.
• Find the theory of constraint in the current process.
• Search for possible mismatch in bounded contexts.
• Find places in the process were we can decouple monoliths.
• Start searching for boundaries for micro-services.

Heuristics

• Add more details with invisible conversations⁶¹
• Ask is this always the case on policy⁶²
• Don’t be shy on duplicating stickies⁶³
• Introduce new colours iteratively⁶⁴
• Let everyone pitch there biggest constraint or opportunity⁶⁵
• Let the domain expert talk and the rest write down domain events⁶⁶
• Make a ceremony of throwing things away⁶⁷
• One (co-)facilitator for every 15 participants⁶⁸
• Only move or remove stickies when discussed with the writer⁶⁹
• Play by the colour coding pattern⁷⁰
• Split and merge above 7 people on process and design level⁷¹
• Split and merge during converging discussions⁷²
• Lead by example and remove stickies as facilitator⁷³
• Start enforcing the timeline when everyone added their domain events⁷⁴
• Use standing table⁷⁵
• When there is a story to tell, start with EventStorming⁷⁶
• Change language on purpose to change how people think⁷⁷

⁶¹https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
⁶²https://www.dddheuristics.com/guiding-heuristics/eventstorming-ask-is-this-always-the-case-on-policy/
⁶³https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
⁶⁴https://www.dddheuristics.com/guiding-heuristics/eventstorming-introduce-new-colours-iteratively/
⁶⁵https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
⁶⁶https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-

events/
⁶⁷https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
⁶⁸https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
⁶⁹https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
⁷⁰https://www.dddheuristics.com/guiding-heuristics/eventstorming-play-by-the-colour-coding-pattern/
⁷¹https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-above-7-people/
⁷²https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-during-converging-discussions/
⁷³https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
⁷⁴https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-

events/
⁷⁵https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
⁷⁶https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
⁷⁷https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/

https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-ask-is-this-always-the-case-on-policy/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-introduce-new-colours-iteratively/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-play-by-the-colour-coding-pattern/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-above-7-people/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-during-converging-discussions/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-ask-is-this-always-the-case-on-policy/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-introduce-new-colours-iteratively/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-play-by-the-colour-coding-pattern/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-above-7-people/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-during-converging-discussions/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/

Visual Collaboration Tools 83

Authors, attribution and citations

• Alberto Brandolini(@ziobrando⁷⁸)
– Book: Introducing EventStorming⁷⁹
– Website: EventStorming⁸⁰

• Kenny Baas-Schwegler(@kenny_baas⁸¹) - Contributed to the article
• Book DDD First 15 years⁸² – Discovering Bounded Contexts with EventStorming — Alberto

Brandolini
• DDD-Crew Github EventStorming Glossary & Cheat sheet⁸³
• VirtualDDD EventStorming Guiding Heuristics⁸⁴

Software design EventStorming

What is made possible

Architectural design is system design. System design is contextual design — it is inherently
about boundaries
(what’s in, and what’s out, what spans, what moves between), and about tradeoffs.”

— Ruth Malan

If we want to start modelling our domain we want to design our shared language for our software
model. Often times there is a lack of shared language between stakeholders, domain experts and the
software team. EventStorming for Software Design gives the simplicity and the inclusion to design
that shared language for the problem to solve. With the focus on the business flow, we start in chaos
to let ideas and concept emerge in the shared pool of understanding. Ending up with discovering
trade-offs, boundaries and able to propose a first model to start writing your code!

⁷⁸https://twitter.com/ziobrando
⁷⁹https://leanpub.com/introducing_eventstorming
⁸⁰https://eventstorming.com/
⁸¹https://twitter.com/kenny_baas
⁸²https://leanpub.com/ddd_first_15_years
⁸³https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
⁸⁴https://www.dddheuristics.com/eventstorming/

https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
https://www.dddheuristics.com/eventstorming/
https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
https://www.dddheuristics.com/eventstorming/

Visual Collaboration Tools 84

How to use it

Room setup Credits: EventStorming by Alberto Brandolini

Find a room with a wall of minimal 5 meters width to stick a paper roll on. Use a flipchart as a
legend to update during the workshop. Have enough stickies and markers for the whole team to use,
you need the following (Colours can change if needed):

Software Design

Legend and Glossary

Actor/Agent
Actor or Agent is a group of people, a department, a team or a specific person involved around a
(group of) Domain Event(s). The official colour to use is a small yellow post-it.

Policy
A policy is a reaction that says “whenever X happens, we do Y”, eventually ending up with in the
flow between a Domain Event and a Command/action. We use a big lilac post-it for these. A policy

Visual Collaboration Tools 85

can be an automated process or manual. A policy can also be named a reactor, eventual business
constraint or rule or a lie detector because there is always more to policies than you first think.

Constraint
A constraint is a restriction we have or need to design from our problem space when we want to
perform a command/action, another word could be consistent business constraint or rule. The official
color to use is a big yellow post-it. It was called an aggregate before which is now officially a legacy
word in EventStorming, since we prefer not to use the word aggregate with business stakeholders.

System
A system is a deployable IT System used as a solution for a problem in the domain. When we
have finished making the timeline consistent, we can start mapping systems around Domain Events.
There can also be duplicates and it can be anything from using Excel to some microservice. The
official colour is a wide pink post-it.

Command/Action
Represents decisions, actions or intent. They can be initiated by an actor or from an automated pro-
cess. During process EventStorming usually, the word “Action” usually fits better with stakeholders
than command because it is easier to grasp. We officially use a blue coloured post-it for it.

Query Model/Information
To make decisions an actor might need information, we capture these in a Query Model. For process
EventStorming information might be more recognised by stakeholders. We officially use a green
post-it to represent a query model.

Enforce colour coding
Enforcing the colour coding is playing EventStorming by the rules. Often used after or during
enforcing the timeline it creates a different dynamic. Below you see the colour coding and how
they are to be used in the flow of the timeline.

Visual Collaboration Tools 86

Software picture

The workshop

Software Design EventStorming is best to do between 3-7 people. When there are more than 8 people
do a split and merge tactic make several groups of 3-7 people and merge before aggregate design.

Visual Collaboration Tools 87

1. Explain to the group the concept of EventStorming and what an Event is in the context of this
workshop. Put the event on the flip chart in order to keep the legend updated

2. Decide the scope of the process. You can do this by placing a Trigger at the start and a Domain
Event at the end of the paper roll, or you can just explain it to the group without making it a
strict boundary and do this later.

Software Design

1. Start with chaotic exploration of Domain Events that fall between these two Domain Events.
Each person in the team comes up with the Domain Events for themselves in order they think
they will be in.

2. Enforce the timeline were from left to right you try to make a consistent story line of Domain
Events, removing duplicates and adding new ones.

3. Use hotspots for missing knowledge or were complexity is hiding in the story. The goal is to
finish the story first and then dive in deep.

4. Either introduce new EventStorming concepts once they start emerging, or use a hotspot and
do it once the story is finished:

• Start introducing the system, aggregate/Consistent Business rule and policy/Eventual
Business Rule concepts.

• Introduce the concept the query model/information.
• Introduce the final concept of action/command and actor.

5. Once the storyline is finished, now introduce all the concept and start to enforce colour coding.
6. Explore the needed edge-cases and their outcomes. Stop when the team has the feeling you

have enough information and you stop learning a lot.

From this finished process model you can do several things:

• Design bounded contexts for your problem.
• Start Aggregate modelling for you bounded contexts.

Visual Collaboration Tools 88

Why?

* To design clean and maintainable Event-Driven software, to support rapidly evolving businesses.
* Design bounded contexts for your problem
* Design decoupled services for a micro-services architecture
* Created a shared model and language between stakeholder and the team implementing the
software.
* Find Domain Events to use in an Eventsourced system.

Heuristics

• Add more details with invisible conversations⁸⁵
• Ask is this always the case on policy⁸⁶
• Don’t be shy on duplicating stickies⁸⁷
• Introduce new colours iteratively⁸⁸
• Let everyone pitch there biggest constraint or opportunity⁸⁹
• Let the domain expert talk and the rest write down domain events⁹⁰
• Make a ceremony of throwing things away⁹¹
• One (co-)facilitator for every 15 participants⁹²
• Only move or remove stickies when discussed with the writer⁹³
• Play by the colour coding pattern⁹⁴
• Split and merge above 7 people on process and design level⁹⁵
• Split and merge during converging discussions⁹⁶
• Lead by example and remove stickies as facilitator⁹⁷
• Start enforcing the timeline when everyone added their domain events⁹⁸
• Use standing table⁹⁹
• When there is a story to tell, start with EventStorming¹⁰⁰
• Change language on purpose to change how people think¹⁰¹
• Explore what-if scenario¹⁰²

⁸⁵https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
⁸⁶https://www.dddheuristics.com/guiding-heuristics/eventstorming-ask-is-this-always-the-case-on-policy/
⁸⁷https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
⁸⁸https://www.dddheuristics.com/guiding-heuristics/eventstorming-introduce-new-colours-iteratively/
⁸⁹https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
⁹⁰https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-

events/
⁹¹https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
⁹²https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
⁹³https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
⁹⁴https://www.dddheuristics.com/guiding-heuristics/eventstorming-play-by-the-colour-coding-pattern/
⁹⁵https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-above-7-people/
⁹⁶https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-during-converging-discussions/
⁹⁷https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
⁹⁸https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-

events/
⁹⁹https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/

¹⁰⁰https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
¹⁰¹https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/
¹⁰²https://www.dddheuristics.com/guiding-heuristics/eventstorming-explore-what-if-scenarios/

https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-ask-is-this-always-the-case-on-policy/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-introduce-new-colours-iteratively/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-play-by-the-colour-coding-pattern/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-above-7-people/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-during-converging-discussions/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-explore-what-if-scenarios/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-add-more-detail-with-invisible-conversation/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-ask-is-this-always-the-case-on-policy/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-dont-be-shy-on-duplicating-stickies/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-introduce-new-colours-iteratively/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-every-pitch-for-hotspots-opportunities/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-let-the-domain-expert-talk-and-the-rest-write-down-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-make-a-ceremony-of-throwing-stickies-away/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-one-facilitator-for-every-15-participants/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-only-move-or-remove-stickies-when-discussed-with-the-writer/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-play-by-the-colour-coding-pattern/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-above-7-people/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-split-and-merge-during-converging-discussions/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-remove-stickies-when-group-feels-sunk-cost/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-start-enforcing-the-timeline-when-everyone-added-their-domain-events/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-standing-tables/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-when-there-is-a-story-to-tell-start-with-eventstorming/
https://www.dddheuristics.com/guiding-heuristics/explore-language-change-language-to-change-how-people-think/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-explore-what-if-scenarios/

Visual Collaboration Tools 89

Authors, attribution and citations

• Alberto Brandolini(@ziobrando¹⁰³)
– Book: Introducing EventStorming¹⁰⁴
– Website: EventStorming¹⁰⁵

• Kenny Baas-Schwegler(@kenny_baas¹⁰⁶) - Contributed to the article
• Book DDD First 15 years¹⁰⁷ – Discovering Bounded Contexts with EventStorming — Alberto

Brandolini
• DDD-Crew Github EventStorming Glossary & Cheat sheet¹⁰⁸
• VirtualDDD EventStorming Guiding Heuristics¹⁰⁹

Team flow EventStorming

What is made possible

The enemy of flow is the invisible and unmeasured queues that undermine all aspects of
product development performance.

— Don Reinertsen
<i>The Principles of Product Development Flow</i>

Most development teams remain blissfully unaware of the negative impact of these invisible queues
on productivity, or how to deal with them effectively. After all, how can we fight an invisible enemy?
Isn’t it better to focus on the problems we can see? So the typical team approach to improving
productivity is to focus on the work being done. For example, trying to make the coding more
efficient, or by starting new work when something gets blocked.

¹⁰³https://twitter.com/ziobrando
¹⁰⁴https://leanpub.com/introducing_eventstorming
¹⁰⁵https://eventstorming.com/
¹⁰⁶https://twitter.com/kenny_baas
¹⁰⁷https://leanpub.com/ddd_first_15_years
¹⁰⁸https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
¹⁰⁹https://www.dddheuristics.com/eventstorming/

https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
https://www.dddheuristics.com/eventstorming/
https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
https://www.dddheuristics.com/eventstorming/

Visual Collaboration Tools 90

How to use it

Preparing the workshop

Room setup Credits: EventStorming by Alberto Brandolini

Find a room with a wall of 6-8 meters width to stick a paper roll on. Use a flipchart as a legend to
update during the workshop. Have enough stickies and markers for the whole team to use, you need
the following (Colours can change if needed):

Team flow tools

Invite everyone from the team and if the teams feels comfortable invite the manager or person who
can help solve hotspots outside of the team.

Visual Collaboration Tools 91

The workshop

1. Explain to the group the concept of EventStorming and what an Event is in the context of this
workshop. Put the event on the flipchart in order to keep the legend updated

2. Start with chaotic exploration of team events. Each person for themself writes down steps in
the flow of software delivery for the teams.

3. Enforce the timeline. The group will now try to make a consistent timeline of the flow.
Removing duplicate events.

4. Capture any problems, questions, hotspots or conversation points on pink colored stickies.
5. Add in the small long yellow for marking who does what event.
6. For every queue, talk it through as a team in terms of how much of a friction point it is for the

overall flow. Are there simple ways to reduce the time that work spends in that queue?

Example Team Flow

Why?

Purposes

* To improve software delivery flow and continuously improve software delivery of a team.
* Know what Continous Delivery capability to try next to improve lead time.

Tips and Traps

• Be carefull with an outsider in the room, the team can feel unsafe.
• Events that look duplicate might not actually be ducplicate. Language can be ambiguise. Be

sure people have a conversation of what do you mean?
• Let a manager observe when the team agrees, but let that person be quiet and only ask questions

that clarifies.
• The goal is to NOT to eliminate all queues but to manage and constrain them.
• Some possible tactics for managing an emergent queue to improve overall flow:

– Set a WIP limit for this queue.
– See if the queue can be eliminated, perhaps through automation (e.g. CI/CD) or better

collaboration (BDD, devops)
– Use the EventStorming map to build out a kanban board so you can limit WIP at the team

and work state levels.

Visual Collaboration Tools 92

Authors, attribution and citations

• Paul Rayner, credits blog post: EventStorming Team Flow¹¹⁰
• Kenny Baas-Schwegler(@kenny_baas¹¹¹) - Contributed to the article

Strategic software delivery EventStorming

What is made possible

If we have a system of improvement that is directed at improving the parts taken
separately.
You can be absolutely sure that the improvement of the whole will not be improved.

— Russel L. Ackhoff

Teams should be able to do continuous delivery on their own. Often time we find teams still
depended on other teams when delivering software. That is why we need to put all these
dependencies in one room and to visualise the entire delivery flow. Then we can find constraints
created from queues, preparation, process or assembly. We are ending up with deciding what the
theory of constraint is to exploit that one and decrease the lead time the most effective.

How to use it

Preparing the workshop

Room setup Credits: EventStorming by Alberto Brandolini

¹¹⁰http://thepaulrayner.com/eventstorming-team-flow
¹¹¹https://twitter.com/kenny_baas

http://thepaulrayner.com/eventstorming-team-flow
https://twitter.com/kenny_baas
http://thepaulrayner.com/eventstorming-team-flow
https://twitter.com/kenny_baas

Visual Collaboration Tools 93

Find a room with a wall of minimal 10 meters width to stick a paper roll on. Use a flipchart as a
legend to update during the workshop. Have enough stickies and markers for the whole team to use,
you need the following (Colours can change if needed):

Strategic software delivery tools

The workshop

1. Explain to the group the concept of EventStorming and what an Event is in the context of this
workshop. Put the event on the flipchart in order to keep the legend updated
2. Start with chaotic exploration of delivery events. Each person for themself writes down steps in
the flow of software delivery for the teams.
3. Enforce the timeline. The group will now try to make a consistent timeline of the flow. Removing
duplicate events.
5. Capture any problems, questions, hotspots or conversation points on pink colored stickies.
4. Let the group use the post-it label to draw boundaries when needed between bigger part of the
process.

6. Add in the small long yellow for marking who does what event.
7. Use the small red coloured stickies to add in queue, preparation, process or assembly time for

events.
8. Let everyone in the team have a two minute elevator pitch about what constraint they think

the focus point should be on.
9. Either do an arrow vote by giving everyone two arrows to point to what they think is the

biggest constraint that need solving. Or use deep democracy to come to a collective authocracy
solution and go even deeper on issues when time is enough.

Why?

Purposes

* To find the theory of constraint of your organisation software delivery.
* Create a collective authocratic decision that has buy-in from the entire group in order to solve the
next constraint.

Visual Collaboration Tools 94

Tips and Traps

• Events that look duplicate might not actually be ducplicate. Language can be ambiguise. Be
sure people have a conversation of what do you mean?

• Let people structure the EventStorming themself and observe what happens to the group
• Let one person observe only (prefarably and anthropologist) in order to also get insight on the

culture of the company.

Authors, attribution and citations

Based on:

• Paul Rayner, credits blog post: EventStorming Team Flow¹¹²
• Alberto Brandolini Big Picture EventStorming from his book¹¹³ and his website: (https://EventStorming.com)¹¹⁴

Kenny Baas-Schwegler(@kenny_baas¹¹⁵) - Contributed to the article
Pim Smeets(@p_smeets¹¹⁶) - Contributed to the article

Feedback / Retrospective

What is made possible

It is not enough to do your best; you must know what to do, and then do your best.

— W. Edwards Deming

One of the most significant characteristics of a highly-efficient team is the ability to improve
continuously.
In order to set up a virtuous continuous improvement cycle, it is necessary to regularly gather quality
feedback, identify possible improvement ideas, and act on the most important ones.

Due to its highly versatile nature, EventStorming makes a great tool to gather quality feedback in a
very efficient way.

How to use it

Because the core idea of EventStorming is to organize events on a timeline, it makes it a powerful
tool to gather feedback. You start by building the timeline collaboratively and then enrich it with
the different aspects that you want to explore.

¹¹²http://thepaulrayner.com/eventstorming-team-flow
¹¹³https://leanpub.com/introducing_eventstorming
¹¹⁴https://eventstorming.com/
¹¹⁵https://twitter.com/kenny_baas
¹¹⁶https://twitter.com/p_smeets

http://thepaulrayner.com/eventstorming-team-flow
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://twitter.com/p_smeets
http://thepaulrayner.com/eventstorming-team-flow
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/kenny_baas
https://twitter.com/p_smeets

Visual Collaboration Tools 95

Preparing the workshop

Like any EventStorming workshop, it all starts with a large modeling surface, a bunch of colored
stickies, fine-point markers, and of course a visible legend.

The size of the wall you are going to use will depend on the length of the period you will retrospect
on, and the quality of the feedback you wish to obtain. The larger the surface, the better quality
you’ll get.

The following colors of post-it notes can be used.

Retrospective tools

The workshop

Once your room is ready, gather people around your modeling space. Make sure everyone grabs a
marker, but do not distribute the post-it notes just yet.

1. Tell the group that the objective is to gather feedback and identify potential improvement ideas.
2. Explain the notion of timeline and what an event is. Then add an orange post-it note on the

visible legend, write Event on it and next to it Something that happened during a period of
time.

3. Clarify the period of time that people should be considering - i.e. last iteration, last week, last
couple of days.

4. In order to jump start people’s ideas, write down yourself a first event on an orange post-it note
- something meaningful that happened during the period - and stick it on the wall according
to the timeline.

5. Invite people to start writing other events. Do not provide any other color of post-it note yet.
6. Give people enough time to build a proper timeline. Explain that it is not an issue to have

duplicates. The time you allow to building the timeline depends on the timebox you have for
the overall exercise, the length of the period you explore and the ability of the group to build
if fast.

7. When you see that people are not writing down new events anymore and when you feel that
the timeline is good enough, it’s about time to introduce a new concept.

Visual Collaboration Tools 96

8. Take a pink post-it note, stick it on the visible legend, write down WTF on it and next to it A
question I asked myself, A moment of doubt, What the hell just happened?. Explain the new
concept to the group and distribute the new color of post-it notes.

9. When you see that people are not writing anymore, introduce yet another concept. Take a green
post-it note, stick it on the visible legend, write down Take Away on it and next to it Something
I learned, Something I will use again. Explain the new concept to the group and distribute the
new color of post-it notes.

10. When you see that people are not writing anymore, introduce yet another concept. Take a
yellow post-it note, stick it on the visible legend, write down Improvement on it and next to it
Something we can do better. Explain the new concept to the group and distribute the new color
of post-it notes.

Visual Collaboration Tools 97

Example of visible legend

Depending on the size of the group and the period of time you want feedback on, the exercise may
take between 15 and 60 minutes.

Visual Collaboration Tools 98

Once you are done with gathering feedback, you can decide to live it like that and just read through
the content. Or you can ask a volunteer to walk the group through the board and do a bit of story
telling. Alternatively, you can ask people to dot-vote¹¹⁷ on the most important improvement ideas
to prioritize them. If so, then write down the top 5 ideas and ask for volunteers to take ownership
and assign a due date for each idea.

Why?

By focusing on events first, you make things very factual and avoid too much judgment. Building
the timeline collaboratively helps people reflect on what actually happened during the period. Then,
by adding on to the notation iteratively, starting with the WTF concept, you help people focus on
their feelings. You then put an emphasis on the learning experience by introducing the notion of take
away. Finally, based on the three previous notions, you focus on concrete ideas that can possibly be
implemented to improve the whole process or experience.

Thanks to the collaborative nature of EventStorming and to the incremental notation, you build
a non-judgmental flow of Facts (a.k.a. Events) -> Feelings (a.k.a. WTFs) -> Learnings (a.k.a. Take-
Aways) -> Improvements. From experience, the quality of the feedback and ideas that you get out of
this exercise is much better than with many other traditional retrospective activities.

Purposes

Here are the main goals of using EventStorming to gather feedback:

• Build a shared vision of what actually happened.
• Identify moments of doubt or uncertainty
• Identify main learning points.
• Identify improvement ideas.
• Prioritize improvement ideas.
• Decide what to do.

Tips and Traps

• Don’t get stuck on the terminology that we used here to describe the different elements of the
notation, like WTFs or Take-aways. You can - and should - use your own vocabulary if it better
fits your own context.

• If you don’t have a large wall, do it on a long table, or even on the floor. Never be limited by
the physical space. It will limit the capacity of your team to reflect and innovate.

• You can explore and get feedback on different aspects by adding more concepts using other
colors, depending on what your objective is (a.k.a. Model Storming). Be cautious though, not
to add too many concepts. It will get confusing. Four or five should be more than enough.

¹¹⁷https://en.wikipedia.org/wiki/Dot-voting

https://en.wikipedia.org/wiki/Dot-voting
https://en.wikipedia.org/wiki/Dot-voting

Visual Collaboration Tools 99

• Observe the group dynamics and add only new concepts when you feel it’s the right time. This
requires a bit of experience in workshop facilitation.

• It is usually better to put the emphasis on collaboration rather than completeness. You don’t
really care if an event was forgotten, unless it was a really important one. What you should
care about it that people share what they experienced and maybe relate to each other.

• When it’s over, it’s over. Don’t try to force anything out of people, unless you are prepared
to dig deeper using some coaching skills. As a facilitator, beware not to project your own
assumptions of what happened on the group and push some of the solutions you like. It’s not
your job. Your job is to help the group come up with improvement ideas to experiment on.

• You can use story telling, walking through the board and telling the story of what happened,
to trigger new trends of thoughts and even proceed with a second round afterwards.

• This activity spans both the 2nd stage and 3rd stage of a standard 5 stages retrospective¹¹⁸,
respectively Gather data and Generate insights.

• The four elements from the incremental notation described above - Facts -> Feelings -
> Learnings -> Improvements - are quite close to the four components of Non Violent
Communication¹¹⁹ - Observation -> Feelings -> Needs -> Request. You could actually use these
instead.

Authors, attribution and citations

• Alberto Brandolini, for inventing EventStorming and for his book¹²⁰
• All the people who attended the first EventStorming Summit in Bologna in 2018 and who

participated to the retrospective that was run at the end, using EventStorming of course.
• All the participants of #play14¹²¹ and especially Luxembourg 2019¹²², Madrid 2019¹²³ and Kuala

Lumpur 2019¹²⁴ where the retrospective of the event was run using EventStorming.
• Cédric Pontet(@cpontet¹²⁵) - Author of this article.

¹¹⁸https://pragprog.com/book/dlret/agile-retrospectives
¹¹⁹https://en.wikipedia.org/wiki/Nonviolent_Communication
¹²⁰https://leanpub.com/introducing_eventstorming
¹²¹https://play14.org
¹²²https://play14.org/events/luxembourg/2019-03
¹²³https://play14.org/events/madrid/2019-05
¹²⁴https://play14.org/events/kuala-lumpur/2019-10
¹²⁵https://twitter.com/cpontet

https://pragprog.com/book/dlret/agile-retrospectives
https://en.wikipedia.org/wiki/Nonviolent_Communication
https://en.wikipedia.org/wiki/Nonviolent_Communication
https://leanpub.com/introducing_eventstorming
https://play14.org/
https://play14.org/events/luxembourg/2019-03
https://play14.org/events/madrid/2019-05
https://play14.org/events/kuala-lumpur/2019-10
https://play14.org/events/kuala-lumpur/2019-10
https://twitter.com/cpontet
https://pragprog.com/book/dlret/agile-retrospectives
https://en.wikipedia.org/wiki/Nonviolent_Communication
https://leanpub.com/introducing_eventstorming
https://play14.org/
https://play14.org/events/luxembourg/2019-03
https://play14.org/events/madrid/2019-05
https://play14.org/events/kuala-lumpur/2019-10
https://twitter.com/cpontet

Visual Collaboration Tools 100

Example Mapping

What is made possible

Before you pull a user story into development, it’s crucial to have a conversation to clarify and
confirm the acceptance criteria.

Example Mapping is a simple but powerful tool. It can frame the conversations that help your team
to build a shared understanding about what you are trying to build.

How to use it

Concrete examples are a tremendous way to help us explore the problem domain, and they make a
great basis for our acceptance tests. But as we discuss these examples, there are other things coming
out in the conversation that deserve to be captured too:

• Rules that summarise a bunch of examples, or express other agreed constraints about the scope
of the story.

• Questions about scenarios where nobody in the conversations knows what the right outcome
is. Or assumptions we’re making in order to progress.

• New user stories we discovered or sliced and deferred out of scope.

Example Mapping uses a pack of 4-coloured index cards and some pens to capture these different
types of information as the conversation unfolds. As we talk, we capture them on index cards, and
arrange them in a map on a table.

Visual Collaboration Tools 101

Pack of 4-coloured index cards

Visual Collaboration Tools 102

The structure of an Example Map.

The workshop

1. Pick a story. It doesn’t really matter what it is, except if you have “technical stories” they might
not work as well. But pick one. Don’t try to do too much.

2. Give yourselves a time limit, and at the end have the team thumb vote on whether you think
the story is ready. Twenty-five minutes is a good amount of time. If you get “no” at the end try
to schedule another session once the questions and concerns have been answered

3. Don’t invite everyone. It might give you too much conversation. The sweet spot for me is 3 to
5 people covering at least the development, test and product perspectives. You can always run
a second session on another story so other people can give Example Mapping a try.

4. Have someone take on a facilitation role. Their job is to look out for conversations that are
sweating the details too much. If no one in the room can answer a question— add a pink
question card. If the conversation is drifting out of scope — take note of a new story on a yellow
card. Eventually the team will do this naturally, but having someone specifically watching for
it can really help at first.

5. Don’t use Gherkin for the examples. Try drawing simple pictures or a simple notation that
works well for your stories. We want the session to focus on discovery, moving to a formal
language too early can stifle the flow of ideas.

Visual Collaboration Tools 103

6. Have the person who came to the meeting with the least understanding of the story write
up the “minutes” of the meeting as Gherkin scenarios and share back to check understanding.
Even better do it as a pair.

7. Do a mini retro at the end and talk about what went well, what didn’t and adjust for next time.

Why?

Example Mapping helps you zoom in and focus on the smallest pieces of behaviour inside your story.
By mapping it out you can tease apart the rules, find the core of the behaviour you want, and defer
the rest until later. With this level of scrutiny, example mapping acts like a filter, preventing big
fat stories from getting into your sprint and exploding with last-minute surprises three days before
demo-day.

Tips and Traps

• A small group of amigos should be able to map out a well-understood, well-sized story in about
25 minutes.

• The bare minimum is your three amigos: a developer, a tester and a product person. That’s just
a minimum though. By all means invite your operations, user experience people or whoever
else is relevant to the story being discussed.

• Instead of going for full-blown formal Gherkin scenarios, just try to capture a list of rough
examples, using the friends episode naming convention.

• Instead of letting everyone share their opinion about what they think the outcome should be,
simply capture the question and move on.

The one where….

Visual Collaboration Tools 104

Authors, attribution and citations

• Example Mapping By Matt Wynne(mattwynne¹²⁶) & (tooky¹²⁷), credits blog post:
– Example Mapping Introduction¹²⁸
– Your fist Example Mapping session¹²⁹

• Kenny Baas-Schwegler (@kenny_baas¹³⁰) - contributed this article.

¹²⁶https://twitter.com/mattwynne
¹²⁷https://twitter.com/tooky
¹²⁸https://cucumber.io/blog/bdd/example-mapping-introduction/
¹²⁹https://cucumber.io/blog/bdd/your-first-example-mapping-session/
¹³⁰https://twitter.com/kenny_baas

https://twitter.com/mattwynne
https://twitter.com/tooky
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/your-first-example-mapping-session/
https://twitter.com/kenny_baas
https://twitter.com/mattwynne
https://twitter.com/tooky
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/your-first-example-mapping-session/
https://twitter.com/kenny_baas

Visual Collaboration Tools 105

Impact Mapping

An impact map is a visualisation of how deliverable scope relates to business goals for a milestone
of a project or a product delivery. Usually, it is presented as a mind map, or some similar visual
hierarchy. Senior technical and business stakeholders typically create an impact map together at the
start of a product milestone, to visualise assumptions, set priorities and discuss delivery options.

An impact map structure contains the following four levels:

Goal
The first level (centre) of an impact map answers the most important question: Why are we
doing this? This is the goal we are trying to achieve.

Actors
The second level of an impact map provides answers to the following questions: Who can
produce the desired effect? Who can obstruct it? Who are the consumers or users of our
product? Who will be impacted by it? These are the actors who can influence the outcome.

Impacts
The third level of an impact map sets the actors in the perspective of our business goal. It
answers the following questions: How should our actors’ behaviour change? How can they
help us to achieve the goal? How can they obstruct or prevent us from succeeding? These are
the impacts that we’re trying to create.

Deliverables
The fourth branch level of an impact map answers the following question: What can we do, as
an organisation or a delivery team, to support the required impacts? These are the deliverables,
software features and organisational activities.

Visual Collaboration Tools 106

An example impact map

What is made possible

Organising a group of stories as an impact map facilitates several levels of decision-making and
prioritiation discussions. A map has a single central idea, so the stakeholder group first has to pick
one big business goal for a delivery. This significantly helps with prioritisation and eliminating
unnecessary scope, which speeds up delivery.

Impact maps also facilitate many good product management techniques. For example, because
deliverables are grouped under related impacts, impact maps provide a way for stakeholders to
pick and prioritise on a higher level, deciding on user impacts before prioritising individual work
tasks. This keeps the focus on objectives, and promotes the idea that deliverables are options which
may (or may not) help to achieve the intermediate impacts.

An impact map puts all the deliverables in the context of the impacts that they are supposed to
support. This allows stakeholders to compare deliverables and avoid over-investing in less important
areas of a system. It also helps to throw out deliverables that do not really contribute to any impact
that is critical for a particular goal. Finally, by connecting deliverables to impacts and goals, an
impact map shows the chain of reasoning that led to a feature suggestion. This allows product

Visual Collaboration Tools 107

managers to scrutinise those decisions better and re-evaluate them as new information becomes
available through delivery.

By clearly communicating assumptions, an impact map helps teams align their activities with
overall business objectives and make better roadmap decisions. When a deliverable is on the map,
a stakeholder has an assumption that it may achieve the desired impact on customers. When an
impact is on the map, a stakeholder has an assumption that the change in customer behaviour
will lead to the overall business objective. This allows teams to design tests to validate or disprove
assumptions, supporting better product management. In addition, higher levels of an impact map
effectively become acceptance criteria for lower-level elements, helping to reduce unnecessary work.
For example, once an impact is achieved, the remaining deliverables in that part of the hierarchy
can be discarded from the plan, and the team can move on to delivering the next most important
impact.

How to use it

When you are describing the goal of a milestone – the first level of the map – focus on the problem
to be solved, not the solution. Avoid design constraints as much as possible. “Creating an iPhone
app” is not a good goal, “improving mobile advertising revenue” is.

When you are describing the actors – the second level – think about who can impact the outcome,
positively or negatively. There are often three types of actors to consider:

• Primary actors whose needs are fulfilled (for example players with mobile devices)
• Secondary actors who provide services facilitating the fulfillment of the needs of primary actors

(such as the fraud prevention team)
• Off-stage actors who have an interest but don’t directly benefit or provide the service (for

example regulators or senior decision-makers)

To describe the impacts – the third level of the map – think about behaviour changes you are trying to
influence. Impacts are not product features. For example, “better mobile search” isn’t an impact, but
a deliverable. “Finding information faster” is a good behaviour change to describe instead. Thinking
about impacts in this way opens up many options for delivery.

When you get to the fourth level of the map, capture user stories, epics, tasks, product ideas – all
the deliverables that could potentially cause a positive impact or prevent a negative one. Then treat
them as options, not as commitments.

Why?

Impact maps have three primary advantages over alternative techniques – they are visual, col-
laborative, and simple. The simple four-level structure is easy to explain and remember, so the
group creating an impact map can focus on sharing knowledge rather than the syntax of boxes

Visual Collaboration Tools 108

or arrows needed to capture information using some other techniques. Visualising the connection
between goals and deliverables helps stakeholders to align plans and priorities speedily. The simple
format and visual nature of impact maps invites collaboration and alignment, facilitating the work
of decision-makers to discover and set common goals for delivery.

Authors, attribution and citations

Impact Mapping was invented by Ingrid Domingues (Ottersten) from inUse, an interaction design
agency based in Sweden.

For more information, check out the books Impact Mapping¹³¹ by Gojko Adzic and Effect Managing
IT¹³² by Mijo Balic and Ingrid Domingues (Ottersten). Also, you can find lots of introductory
community resources and ideas for applying impact mapping and combining with other techniques
at impactmapping.org¹³³.

¹³¹https://gojko.net/books/impact-mapping/
¹³²http://www.amazon.com/gp/product/8763001764/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=8763001764&

linkCode=as2&tag=swingwiki-20
¹³³https://impactmapping.org

https://gojko.net/books/impact-mapping/
http://www.amazon.com/gp/product/8763001764/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=8763001764&linkCode=as2&tag=swingwiki-20
http://www.amazon.com/gp/product/8763001764/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=8763001764&linkCode=as2&tag=swingwiki-20
https://impactmapping.org/
https://gojko.net/books/impact-mapping/
http://www.amazon.com/gp/product/8763001764/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=8763001764&linkCode=as2&tag=swingwiki-20
http://www.amazon.com/gp/product/8763001764/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=8763001764&linkCode=as2&tag=swingwiki-20
https://impactmapping.org/

Visual Collaboration Tools 109

Independent Service Heuristics

Finding good stream boundaries with Independent Service Heuristics.

What is made possible

When designing organizations for a fast flow of change, we need to find effective boundaries
between different streams of change in order to ensure that we create good team boundaries. This can
be achieved by identifying potential boundaries across services, domains, applications and streams.
This chapter looks at how you can do this using a technique called Independent Service Heuristics
(ISH).

Getting started

ISH is a technique invented by the authors of Team Topologies, Matthew Skelton and Manuel Pais,
and subsequently refined by others, including Team Topologies Valued Practitioners (TTVPs)¹³⁴
and members of the wider DDD community. You can find more information via the ISH GitHub
Repository¹³⁵, which is available under CC BY-SA license.

ISH are simple rules-of-thumb or clues that can be used to identify candidate value streams and
domain boundaries by seeing if they could be run as a separate SaaS/cloud product. It is intended
to stimulate conversation and provide a frame of thinking about basic domain concepts that lead to
team boundaries that support fast flow of change. ISH does not attempt to be a perfect “catch-all”
tool

How to use ISH to explore team boundaries

Imagine a fictional company called Footprints Tours which offers ‘alternative’ walking tours of
cities exploring their social and cultural history. They provide both guided and self-guided tours
and have implemented a monolith website and mobile application to serve all of their customer
needs. The flow of development has slowed down significantly as the code base has grown over time.
Using ISH they are looking to understand how they might re-organize the teams, and therefore the
applications/services, to improve flow and alignment with the needs of their customer.

In any process or methodology, getting started and taking the first step is usually the hardest part,
and in the case of ISH, that first step is deciding where to focus your attention. Essentially we just
need to choose an area of the business that needs to be represented in software. This could be a user
journey, a “product”, a possible business domain, a software service, an entire software application,
a set of tasks for a single user persona, a possible value stream, etc.

¹³⁴https://teamtopologies.com/partner-types/team-topologies-valued-practitioner-ttvp
¹³⁵https://github.com/TeamTopologies/Independent-Service-Heuristics

https://teamtopologies.com/partner-types/team-topologies-valued-practitioner-ttvp
https://github.com/TeamTopologies/Independent-Service-Heuristics
https://github.com/TeamTopologies/Independent-Service-Heuristics
https://teamtopologies.com/partner-types/team-topologies-valued-practitioner-ttvp
https://github.com/TeamTopologies/Independent-Service-Heuristics

Visual Collaboration Tools 110

The important thing here is that we actively choose an area and get started with identifying possible
boundaries for its services (and teams). The process is quick enough that we won’t waste too much
time if we happen to choose an area that does not naturally fit a domain boundary but at least we
can discount it and move on to the next candidate.

To achieve this, we would arrange a workshop (1-2 hours is a reasonable time period to get started)
consisting of people (8-15) that “know how the work works”: this might range from leaders and
managers to on-the-ground practitioners. In the workshop we are looking to consider different ways
in which we might break up the existing system into “independent services”.

When working with ISH we typically use three different lenses to explore possible types of service
boundaries: Fracture Planes, Micro-Enterprises and User Needs (although the example in this article
only looks at fracture planes for brevity). Each lens provides a different aspect from which to view
our system and uncover any potential service boundaries. See more about each lens at he end of the
chapter.

Taking each lens in turn, we “brain dump” as many potential service or domain boundaries as we
can think of. In the following diagram, we can see several possible fracture planes:

An example of potential fracture planes “brain dump”

After a specified time period (10-15 mins), or after we have exhausted all options for the current
lens, we choose some “candidate” services based upon what “feels” like it might be a good fit and
then add them to a matrix (as shown in the image below).

Visual Collaboration Tools 111

Resulting matrix of answers

We then ask each workshop attendee to apply the ISH checklist (described in the last section), adding
a “Yes”, “No”, or “Maybe” sticky note for each heuristic in the list against each candidate service.
When this is completed, a simple heatmap is generated via the green, yellow and red sticky notes. We
can then use this to identify areas that might need further discussion (the yellow and red stickies) or
areas where there is clear agreement. This helps to quickly highlight a consensus on which candidate
areas we should explore further.

This process results in an increase in practitioner and manager-level awareness of the business
reasons for a change rather than making changes to “an IT system” that happens to be easy to
deploy.

After using ISH to identify potential domain boundaries or value streams, it often makes sense to
delve deeper into the problem space using other DDD techniques.

Rules and Principles

The ISH process has 4 key principles:

• Flow-friendly boundaries: optimized for fast flow
• Business friendly language
• Promote group discussion and learning
• Rapid results needed: use a rapid, ‘low-fidelity’ approach

ISH comprises 10 key questions in form of a checklist that aim to assess whether a service is viable,
decoupled and outsourceable using business intuition, experience and expertise.

Visual Collaboration Tools 112

Additional Information

The Independent Service Heuristics Checklist

The following is a copy of the current (at the time of writing) ISH checklist. To ensure you have the
latest version, please check ISH checklist¹³⁶ github repository.

1. Sense-check: Could it make any logical sense to offer this thing “as a service”?

1. Is this thing independent enough?
2. Would consumers understand or value it?
3. Would it simplify execution?

2. Brand: Could you imagine this thing branded as a public cloud service (like AvocadoOnline.com
�)?

1. Would it be a viable business (or “micro-business”) or service?
2. Would it be a compelling offering?
3. Could a marketing campaign be convincing?

3. Revenue/Customers: Could this thing be managed as a viable cloud service in terms of revenue
and customers?

1. Would it be a viable business (or “micro-business”) or service?
2. What would a subscription payment include?
3. Is there a clearly defined customer base or segment?

4. Cost tracking:Could the organization currently track costs and investment in this thing separately
from similar things?

1. Are the full costs of running this thing transparent or possible to discover? Consider infrastruc-
ture costs, data storage costs, data transfer costs, license costs, etc.

2. Is the thing fairly separate (not too interconnected) from other things in the organization?
3. Does the organization track this separately?

5. Data: Is it possible to clearly define the input data (from other sources) that this thing needs?

1. Is the thing fairly independent from lots of data of multiple sources?
2. Are the sources internal (under our control) and not external?
3. Is the input data clean and not messy?

¹³⁶https://github.com/TeamTopologies/Independent-Service-Heuristics

https://github.com/TeamTopologies/Independent-Service-Heuristics
https://github.com/TeamTopologies/Independent-Service-Heuristics

Visual Collaboration Tools 113

4. Is the input data provided in a self-service way?
5. Can the team consume the input data “as a service”?

6. User Personas: Could this thing have a small/well-defined set of user types or customers (user
personas)?

1. Is the thing meeting specific user needs?
2. Do we know (or can we easily articulate) these user types and their needs?

7. Teams: Could a team or set of teams effectively build and operate a service based on this thing?

1. Would the cognitive load (breadth of topics/context switching) be bounded to help the team
focus and succeed?

2. Would no significant infrastructure or other platform abstractions be needed?

8. Dependencies: Would this team be able to act independently of other teams for the majority of
the time to achieve their objectives?

1. Is this thing logically independent from other things?
2. Could the team “self-serve” dependencies in a non-blocking manner from a platform?

9. Impact/Value: Would the scope of this thing provide a team with an impactful and engaging
challenge?

1. Is the scope big enough to provide an impact?
2. Would the scope be engaging for talented people?
3. Is there sufficient value to customers and the organization that the value would be clearly

recognized?

10. Product Decisions: Would the team working on this thing be able to “own” their own product
roadmap and the product direction?

1. Does this thing provide discrete value in a well-defined sphere of execution?
2. Can the team define their own roadmap based on what they discover is best for the product

and its users and not be driven by the requirements and priorities of other teams?

Independent Service Heuristic Lenses

The following describes some of the lenses used when working with ISH

Visual Collaboration Tools 114

Fracture Planes

Fracture planes is a term used to typically describe how a rock or boulder might naturally shard
or break with a relatively small amount of force; we can apply the same principle to our search
for boundaries within software systems. The idea is simple, think about your current systems and
consider whether there are parts of the system that could be “fractured” into a smaller sub-system
that could be owned by a single team using planes such as business domains, regulatory compliance,
change cadence, technology, risk, performance isolation, user personas and team location.

Micro-Enterprise

Looking at systems and organizations as a series of interconnected micro-enterprises is an approach
taken from the Haier model for organizational management¹³⁷ and is probably one of the most
extreme approaches to breaking up a system into smaller sub-systems. The concept is based
on allowing employees to self-organize to create a network of interdependent micro-enterprises
interacting through shared platforms that grow and flex as demand fluctuates within the ecosystem,
i.e. if an existing employee has an idea to start a new micro-enterprise and wants to be its CEO the
wider organization will do all it can to enable that to happen. Thinking in this way enables us to
consider which part of our systems might be truly independent enough to run as its own business
with just 8 to 12 employees. Would the domain area be sufficient to have its own brand, revenue
and customers, cost tracking etc.? Would it be a customer-facing company or provide underlying
services as a platform to other companies within the ecosystem, or maybe provide enabling services
to help upskill other companies with new capabilities?

User Needs

The final lens from which to identify potential service boundaries is via user needs:

• explicit needs: that are derived from how users describe what they are trying to do.
• implicit needs: that are not typically expressed by the user themselves (as they are sometimes

not aware of them) but can become evident via observation
• created needs: where a user has to do something because it is required by the service.

When looking to uncover service boundaries from the user’s perspective, we need to consider what
the customer is trying to get done and identify whether there might be a series of connected or
dependent services that meet a particular need and could be owned and maintained by a small team
of people. There are lots of examples of user needs on the internet, but this article is quite a good
one¹³⁸.

¹³⁷https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-
d8afceef7f5e

¹³⁸https://hollidazed.co.uk/2017/07/14/leading-service-design-user-needs/

https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-d8afceef7f5e
https://hollidazed.co.uk/2017/07/14/leading-service-design-user-needs/
https://hollidazed.co.uk/2017/07/14/leading-service-design-user-needs/
https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-d8afceef7f5e
https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-d8afceef7f5e
https://hollidazed.co.uk/2017/07/14/leading-service-design-user-needs/

Visual Collaboration Tools 115

Authors, attribution and citations

Rich Allen Team Topologies Valued Practitioner

Matthew Skelton co-author of Team Topologies

http://teamtopologies.com/¹³⁹

https://teamtopologies.com/ish¹⁴⁰

Independent Service Heuristics Github¹⁴¹

Haier Micro Enterprises¹⁴²

Service design starts with user needs¹⁴³

¹³⁹http://teamtopologies.com/
¹⁴⁰https://teamtopologies.com/ish
¹⁴¹https://github.com/TeamTopologies/Independent-Service-Heuristics
¹⁴²https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-

d8afceef7f5e
¹⁴³https://hollidazed.co.uk/2017/07/14/leading-service-design-user-needs/

http://teamtopologies.com/
https://teamtopologies.com/ish
https://github.com/TeamTopologies/Independent-Service-Heuristics
https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-d8afceef7f5e
https://hollidazed.co.uk/2017/07/14/leading-service-design-user-needs/
http://teamtopologies.com/
https://teamtopologies.com/ish
https://github.com/TeamTopologies/Independent-Service-Heuristics
https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-d8afceef7f5e
https://medium.com/work-futures/evolution-of-the-platform-organization-3-haier-rendanheyi-and-zhang-ruimins-vision-d8afceef7f5e
https://hollidazed.co.uk/2017/07/14/leading-service-design-user-needs/

Visual Collaboration Tools 116

Interactions Mapping

What is made possible

Individuals and interactions over processes and tools

-First value of the Manifesto for Agile Software Development¹⁴⁴

Ever started working with a team and realized that interactions between people within the team, or
between the team and other teams were unclear? Ever asked yourself Who is talking to whom? and
Why aren’t these people talking to each other?. Ever had a case where people where not involved
in conversations where they should have been, or maybe the wrong people were interacting? To
alleviate some of these issues, you should always start by visualizing things in order to build a
shared understanding of the interactions that are going on.

An Interactions Map is a very powerful tool that helps you figure out interactions between people
and teams. It helps visualize the exiting interactions, the ones that are missing, and sometimes the
ones that should be limited or even stopped.

Because an Interactions Map is a visual collaboration tool, it also helps everyone build and share
a common understanding of the interaction and communication structure around them, in a given
context.

How to use it

Preparing the workshop

For this workshop, you will need

• An empty wall where you can stick post-it notes
• Different colors and sizes of post-it notes
• Different colors of string
• Blu tack
• Post-it label roll

Because it is an alignment workshop as much as a discovery workshop, you should invite all the
team members to participate. If the interactions you want to map span more than one team, it is
safe to assume that inviting one or two key persons from each team is the best approach. In any
case, you need to invite the people who actually have a clue of what is really going on. This does
not necessarily mean a manager. Most of the time, we see that the people who are doing the job are
the best people to explain how they do it. Surprising, right!

¹⁴⁴http://agilemanifesto.org/

http://agilemanifesto.org/
http://agilemanifesto.org/

Visual Collaboration Tools 117

The workshop

What we want to achieve here is to map the interactions between people and teams. We want to
visualize who is interacting with whom, and through what means of interaction.

1. Start by figuring a color scheme. For example, all blue post-it notes are internal people. All
orange post-it notes are external people like consultants and partners.

2. Ask the participants to write down post-it notes with all the people involved first. You can even
ask them to draw people/stick-man/stick-woman on the post-it note. To avoid duplicates, each
time someone writes a name down, they should tell the rest of the group and stick the post-it
note on the wall. This should foster collaboration.

3. Once you have listed all the people involved, ask participants to move them on the map
according to the people they interact with. After a while, you should see clusters of people
appearing.

4. Name the cluster with post-it label. The cluster could be a team, a department, a service. It’s
up to you to define what level of granularity you are mapping.

5. Use smaller yellow post-it notes to symbolize important roles. Stick the post-it note on the
person who is assuming this role.

6. Use one color of string and blu tack to materialize existing interactions. A string could go from
one post-it note to another to materialize interactions between two people, or from one post-
it note to a label to materialize interactions between a person and a team, or between two
labels for interactions between teams. Try to focus on interactions that matter to your context,
otherwise you risk to end up with too many strings for anything to make sense anymore.

7. Optionally, use a different color of string to materialize interactions that should be reinforced,
started or stopped.

8. You can also give more information about the interaction by adding a post-it note on the string
itself, specifying the type of interaction and the processes and the tools that are used.

The following picture shows a possible outcome.

Interactions Map

Visual Collaboration Tools 118

In that picture, a:

• Blue post-it note implies an internal person
• Orange post-it note implies an external person
• Smaller yellow post-it note implies a role
• Yellow label implies a team or group of people
• Green post-it note implies an interaction means, a process or a tool

It does not show very well on the picture, but some of the string have different colors and represent
interactions that should be kept or some that should be either started or reinforced.

Why?

Purposes

Visualizing interactions between people and/or teams, as well as the means of interactions that are
being used, help us make sense of complexity and build a common understanding of what is going
on.

Mapping interactions may help you spot some dysfunctional interactions, interactions that are not
at the right level for example, between individuals instead of at the team level, or only between
team managers instead of involving the whole team. There is no right model of interaction and the
best way for people and teams to interact is highly dependant on the context. However, visualizing
things helps us to analyze and reflect.

It also allows identifying possible improvements or opportunities for coaching, to help make
interactions more efficient.

Here are the main benefits of an Interactions Map:

• Obtain a shared understanding of what is really going on
• Visualize interactions between people and/or teams
• Specify interactions means that are being used
• Identify interactions that should be kept, reinforced, started or stopped
• Identify dysfunctional interactions
• Identify opportunities for coaching

Tips and Traps

• Proximity or distance are meaningful. Don’t hesitate to move things around when need be.
One of the many advantages of using post-it notes is that they can be moved around and that
they can be easily thrown away and rewritten.

Visual Collaboration Tools 119

• Always know whether you are mapping the situation as is, or to be. Make sure everyone is on
the same page. Sometimes, do both. Start by mapping the situation as is, and then do a second
iteration to map the situation to be. This exercise may end up providing a lot of insights. Just
don’t forget to take a picture in between.

• As mentioned above, you can use different colors of string to qualify the interactions. For
example, interactions that should be kept, reinforced, started or stopped. But colors could
represent some other characteristic like the level of interactions - strategic tactical and
operational - or the type of interactions - leadership, execution, reporting - or the means of
interactions - informal, face-to-face, meeting, backlog management tool, IM, email, phone, …

• In the example above, we used smaller yellow post-it notes to represent roles. Based on the
Interactions Map, we could go further and run a Roles and Responsibilities workshop, where
we collaboratively list all the responsibilities that need to be addressed, group them into roles,
and then let people assign themselves to the roles that have been co-constructed. It is a very
powerful workshop to run when you realize that responsibilities are not precisely identified,
that too many people share the same responsibility or that some responsibility simply does not
belong to anyone. A nice side effect of co-constructing a vision with all the people involved is
that on the one hand we obtain better alignment and shared understanding, and on the orther
hand we get better adhesion to the shared model.

• Different colors of post-it notes can be used to differentiate people. In the picture above, internal
and external people are respectively represented by blue and orange post-it notes. Depending
on what you want to explore, you can use any kind of color-coding. Whatever makes sense
in your context, you could have colors that represent things like services/departments in the
organization, hierarchical levels, or even roles.

• You can give more information about the interactions by using a specific color or shape of
post-it notes that you stick directly on the strings. In the example above, we used green to
specify the type of interactions, the processes in place and the tools being used. But it could be
anything that makes sense in your context.

• Don’t be too formal on the notation. Be creative. But make sure that the semantic of a symbol
on the map - post-it note, label, string, color - is clear for everyone and consistently used.
Therefore, it is recommended to use a visual legend next to the map, where you keep track of
all the notation.

• A possible extension of this workshop would be to use Team Topologies¹⁴⁵ to clarify the types of
teams (stream-aligned, enabling, complicated sub-system, platform) and their interaction mode
(collaboration, X-as-a-service, facilitating). This has not been tested yet, but there is certainly
an untapped potential here.

Authors, attribution and citations

• All the members of the coaching team at Agile Partner¹⁴⁶ with whom we have collaboratively
perfected our approach over the years and refined our workshops, by running them over and

¹⁴⁵https://teamtopologies.com/
¹⁴⁶https://www.agilepartner.net/en/home/

https://teamtopologies.com/
https://www.agilepartner.net/en/home/
https://teamtopologies.com/
https://www.agilepartner.net/en/home/

Visual Collaboration Tools 120

over with different teams and customers. Interactions Map is one of the workshop formats that
we came up with.

• Cédric Pontet(@cpontet¹⁴⁷) - Author of this article.

¹⁴⁷https://twitter.com/cpontet

https://twitter.com/cpontet
https://twitter.com/cpontet

Visual Collaboration Tools 121

Mikado Method

What is made possible

The Mikado Method is a structured way to make significant changes to complex code source¹⁴⁸.
For small refactorings, a software engineer can keep the graph of changes in his mind, but often in
complicated and complex systems, it is a hard thing to do. On top of that, the Mikado Method allows
team members to collaborate to create a solution that fits the team.

The Mikado Method produces a graph, with the goal as the centre of the graph. The nodes are the
changes that are needed to be done to achieve the goal.

¹⁴⁸http://www.methodsandtools.com/archive/mikado.php

http://www.methodsandtools.com/archive/mikado.php
http://www.methodsandtools.com/archive/mikado.php

Visual Collaboration Tools 122

Example of a Mikado Method graph. Credits to Ola Ellnestam and Daniel Brolund

How to use it

To start with the method, write the goal in a paper, circle it twice. Then try it in code. It is expected
that the code will break, where it will not compile or transpile; some reference will be broken or a
test will fail. Based on the number of failures discovered, create new nodes from the initial one.

Revert the changes that you applied. It is an important step! Don’t be afraid of using your Version
Source Control system. It is quicker to apply the changes in a naïve fashion, without overthinking
it.

Visual Collaboration Tools 123

After you revert the changes, move to a node with leaves. Apply the same concept: do a change and
examine what breaks. As described before, note the code failures as new nodes and revert. Do these
steps until you do have failures in code.

From that point on, start from the outermost leaves, applying the changes. In this way, you don’t
have surprises!

Why?

Using this method allows the teams to discover paths where a change can break code; it is useful
as a method to do as a team, given that the team find at the same time the knowledge. Also, for
changes that can span days (raise the hand who said that is a 5-minute change, and past two days
they still were doing it), it is a great way to persist and share the knowledge.

Given the technology changes in the software domain, refactoring is a fact of any software
engineering team. This method helps the team to decreases the time to apply changes, given that
it is possible to visualise the impact of a single goal. Also, the team doesn’t need to implement all
changes in one go, allowing them to do it in small batches.

Tips and Traps

• The Mikado Method is a great way to share knowledge among team members. It can be done
in a pair or mob setting

• Teams that are refactoring applications have a method that helps to persist the refactoring
paths, visualising the complexity involved. It gives insights on the effort involved

• Timebox the activity. It allows teams to get focus on the tasks
• Don’t be dogmatic on the way that the Mikado graph is persisted
• Avoid reverting changes, with the fear of losing work
• Don’t record all the nodes in the graph. If someone interrupts the activity, the mental map is

lost

Authors, attribution and citations

The method was created by Ola Ellnestam¹⁴⁹ and Daniel Brolund¹⁵⁰ and published in the book¹⁵¹
with the same title.

This article was written by João Rosa¹⁵². He is a Strategic Software Delivery Consultant at Xebia,
specialised into helping companies to leverage the power of technology to drive their business.

¹⁴⁹https://twitter.com/ellnestam
¹⁵⁰https://twitter.com/danielbrolund
¹⁵¹https://www.manning.com/books/the-mikado-method
¹⁵²https://twitter.com/joaoasrosa

https://twitter.com/ellnestam
https://twitter.com/danielbrolund
https://www.manning.com/books/the-mikado-method
https://twitter.com/joaoasrosa
https://twitter.com/ellnestam
https://twitter.com/danielbrolund
https://www.manning.com/books/the-mikado-method
https://twitter.com/joaoasrosa

Visual Collaboration Tools 124

Quality Storming

What is made possible

In various communities, several methods for the collaborative modeling of business requirements
have been established in recent years. Well-known examples are EventStorming or Domain
Storytelling. These approaches are based on achieving a better shared understanding of the business
requirements in an interdisciplinary way. But what about the requirements for the quality of the
software being developed? Especially here, a collaborative approach is immensely important in order
to avoid chasing after imperfect ideals that cause the costs and complexity of products to explode.
This is where the workshop format Quality Storming comes in, which I would like to introduce in
the course of this article.

It depends! On what?

In our daily work we repeatedly experience situations in which teams passionately discuss the
advantages and disadvantages of specific solution options. Popular in these discussions are technical
topics, such as HTTP Feeds vs. Apache Kafka. However, such arguments are also becoming more and
more common when it comes to slice the software functionally. A popular answer to the question
“which solution is the best” is then often “it depends”. This answer indicates that we are dealing
with a decision that implies a trade-off. The second question, “on what?” is therefore automatically
asked. Possible factors may involve:

• Functional requirements
• Regulatory requirements
• The environment of a product or project
• Requirements on the quality of a software product

The first three drivers for such decisions are taken more or less seriously in most organizations.
With the last point, however, I regularly find that most teams lack resilient requirements. Most
of the time, these are so vaguely defined that they cannot be used as a basis for decision-making.
Typical examples are “the system must be scalable”, “all common browsers must be supported” or
“all input must be immediately visible everywhere at all times”. It goes without saying that over
the course of time, best practices have established themselves that make suggestions as to how the
requirements for the quality of a software product should ideally be documented. An example of
this is the formulation in the form of quality scenarios, which are also used in the ATAM process
(Architecture Tradeoff Analysis Method) for the evaluation of software architectures. There are
two steps in the ATAM process that address the definition of quality requirements for a software
architecture: “5. Generate quality attribute utility tree” and “7. Brainstorm and prioritize scenarios”.
This raises the question of how we, as a team, can get to these requirements. At this point, there are
always similar challenges in many organizations:

Visual Collaboration Tools 125

• There are too rigid silos between individual stakeholders (development, operations, depart-
ments, testing, …), which make collaboration difficult or even impossible.

• Especially domain experts often find it difficult to define quality requirements in a way that
development can work with them.

• There is little insight into the work and challenges of the respective other groups of people.
• Rigid silos mean that there are very stringent documentation requirements for the handoff

between the individual departments.

As a result, the quality requirements are too superficial and are primarily used to fulfill internal
governance checklists. Software architects and developers can rarely make real design decisions on
this basis.

Therefore, the following quote from Alberto Brandolini is also fully correct with regard to quality
requirements:

it is not the domain expert’s knowledge that goes into production, it is the developer’s
assumption of that knowledge that goes into production

—Alberto Brandolini

The quote just mentioned was not chosen at random. Alberto Brandolini is the inventor of a
collaborative modeling method called EventStorming, which has caused quite a stir in the Domain-
driven Design community and is now known far beyond that community. EventStorming, like most
methods in the field of Collaborative Modeling, is based on the following principles:

• Complete abandonment of digital modeling tools on computers
• Avoiding any entry barriers for all participants
• A high degree of interactivity
• The focus is on the mutual exchange and less on the production of formal artifacts.

This is where Quality Storming comes in, trying to bring together a heterogeneous set of stakeholders
of a product or project to collect quality requirements. The goal is to gain a shared understanding
of the real needs for the quality characteristics of a product. To achieve this goal, Quality Storming
uses some techniques from the highly acclaimed book “Game Storming” by Dave Gray, which also
had a significant impact on EventStorming.

It is not the claim to produce perfectly formulated quality scenarios with the help of Quality
Storming. Instead, the method aims to create a well-founded, prioritized basis for later formalization,
which is understood across different stakeholder groups. The more often teams work with the
technique, the better the quality of this basis becomes over time. Advanced teams are quite capable
of creating very well-formulated scenarios within the framework of such a workshop.

Visual Collaboration Tools 126

How to use it

As with many other methods in the field of Collaborative Modeling, a solid preparation is an
important success factor for the actual workshop. Make sure to take the following aspects into
account:

• Selection of the participants
• Invitation and management of expectations
• Selection of a quality model
• Room equipment, moderation material and short documentation of the selected quality model
• Room selection
• Preparation of the room before the workshop

The most important thing is undoubtedly the selection of the participants. We must select a
heterogeneous and diverse group of people. All relevant stakeholders of a product or project should
be present in order to get a holistic opinion and, above all, to achieve commitment for the results.
Nothing would be more unfortunate than an influential group not participating and calling the
overall result into question after one week. When selecting the circle of participants, think for
example of the following groups of people:

• Domain experts
• User Experience (UX) specialists
• Software developers and architects
• Project sponsors and management
• Testers
• Requirements engineers
• Folks from the ops departments
• Specialists for accessibility
• End users

Experience has shown that 16 or 24 people are ideal, especially when working with the widely used
ISO/IEC 25010 quality model. I will leave a few comments on quality models further below.

When inviting the participants, it is vital to make sure that no false expectations are stirred up. It is
important to emphasize that at the end of the workshop, there is a binding commitment to the quality
requirements. The recipients of the invitation should understand that based on the results of the
workshop, design decisions will be made in the areas of software development and architecture, user
experience, and operations. However, the impression should not be given that a perfectly formulated
document or a formally perfect quality tree is the result of a Quality Storming. The creation of such
artifacts is done afterward, as needed. Make sure that the participants in the workshop are present for
about 4 to 6 hours. The invited persons should plan the time exclusively for attendance. A telephone
conference or a meeting in between is counterproductive and disturbs the process unnecessarily.

Visual Collaboration Tools 127

Already during the preparation, the organizer of a Quality Storming should think about the selection
of a quality model. A quality model can be described as a rough outline for a quality tree. The latter
can quickly be recorded in the form of a mind map.

In some companies, such a model for the description of software quality requirements already exists.
In this case, it is an excellent starting point, and it is recommended to start with it. Fortunately, if
no quality model exists yet, there is no need to come up with one of your own, because there is a
standardized proposal for a quality model in the ISO/IEC 25010 standard.

ISO/IEC 25010 as a quality model

ISO/IEC 25010 provides a total of eight main categories. As shown in Figure 2, these categories, in
turn, have subcategories.

The choice of the quality model is essential because it will have an impact on the number of
participants. I always prefer the following formula for determining the perfect amount of people:
quantity of the quality model’s top categories x 2 or 3. In the case of ISO/IEC 25010, we would be at
16 or 24 people, both figures I mentioned earlier regarding this paragraph.

For the room selection, I strongly recommend to prefer rooms that have either no tables or movable
tables. Traditional meeting rooms with wired tables are counterproductive. The room has to be large
enough for the number of participants plus 1-2 facilitators as determined earlier, and should still
offer enough freedom of movement for the participants when placing two flip charts and up to
eight movable pinboards. If there are not enough movable pinboards available, the room should
have two free long walls on which plotter paper can be attached.

The last preliminary measure is the organization of the room equipment, the moderation material,
and the rough documentation of the quality model. Ideally, the room should be equipped as
follows:

Visual Collaboration Tools 128

• One movable pinboard per top category of the quality model, covered with paper on both sides.
In the case of ISO/IEC 25010, this would be eight pinboards.

• If not enough pinboards are available, which is not uncommon, strips of plotter paper should
be attached to the walls of the room for each major category of the quality model.

• Two flip charts.
• A pair of stand-up tables.

The following list moderation material is useful for a good Quality Storming workshop:

• Numerous, square and above all high-quality sticky notes in a uniform color.
• For each person in the room an identical black pen (e.g. Edding 1300 or Sharpies) and a few

spare pens.
• Per participant about 20-30 small sticky dots.

Finally, I recommend the preparation of signs for the main and subcategories of the underlying
quality model. I like to use DIN A4 for the top categories and DIN A5 for the subcategories. Each
sign contains the name of the category in large, easily readable letters and a short description of
the respective category. When describing the categories, please make sure that you use words that
really every person in the room can understand. I also recommend the wording of a few simple
examples for the respective categories. A comprehensive collection of such samples can be found in
a subproject of arc42 on GitHub¹⁵³.

Shortly before the actual workshop, you need to setup the room. Each of the top categories of the
quality model gets its own pinboard. Prepare this as follows:

¹⁵³https://github.com/arc42/quality-requirements

https://github.com/arc42/quality-requirements
https://github.com/arc42/quality-requirements
https://github.com/arc42/quality-requirements

Visual Collaboration Tools 129

Preparation of a pinboard for a main category of the quality model

Visual Collaboration Tools 130

Place the sign for the main category of the quality model at the top of the pinboard and line up
the signs for subcategories vertically downwards on the left side. Especially with the subcategories
it is advisable to pay attention to good descriptions. Furthermore, I recommend placing one or
two examples of quality requirements or scenarios for each subcategory, especially during the first
sessions of a Quality Storming workshop. The colors used in figure 3 are not to be understood as
binding color codes.

Afterward, the mobile pinboards are placed evenly in the room. Please make sure that up to six
people can stand and discuss on the pinboards. In addition, place two flip charts and ideally stand-
up tables with moderation material in the middle of the room. The room setup should look something
like the following picture:

Visual Collaboration Tools 131

Preparation of the room for Quality Storming

Visual Collaboration Tools 132

Running the actual workshop

Once the room is prepared, the workshop can begin. A Quality Storming consists of the following
phases:

1. Introduction
2. Broad Collection
3. Consolidation
4. Prioritization
5. Outlook

Phase 1: Introduction

This phase can usually be very short and should not take longer than 10 - 15 minutes. It is essential
that the workshop facilitator briefly outlines the motivation and the approximate procedure. As a
rule, I also briefly present the underlying quality model and provide a few practical examples of
possible quality requirements. Especially teams that are conducting a Quality Storming for the first
time will benefit immensely from the above-mentioned presentation and examples. As a facilitator,
make sure that the participants have a rough idea of how to formulate quality requirements and
which aspects have to be considered. You should also briefly present a code of conduct. In this
context, I refer, for example, to desired and undesirable behavior.

As a facilitator, make sure that you have addressed the following points:

• Rough procedure including breaks
• Presentation of the quality model including examples
• Code of conduct

Phase 2: Broad collection

After the introduction, the first team building for the initial collection of quality requirements takes
place. Depending on the number of participants and the number of main categories of the quality
model, groups of 2 or 3 should be formed. Please make sure that the persons in the individual
teams belong to different stakeholder groups. Avoid, for example, that two software developers
join together to form a team. The teams will eventually be divided up in such a way that there is a
heterogeneous group of two or three people on each pinboard.

After the team building, we start the collection of quality requirements. Each team stands at a
pinboard that represents a top category of the quality model. The first step is to collect requirements
for this category. The teams collect ideas, write them on the sticky notes provided and stick them
on the pinboard to the respective subcategories.

Visual Collaboration Tools 133

Collection of requirements in phase 2

Visual Collaboration Tools 134

After ten minutes, it is time for the groups of two or three to change the main category of the
quality model and thus also the pinboard. After the change, the requirements are collected again for
ten minutes, written on sticky notes and stuck to the pinboard. We repeat this process until it was the
turn of each group. This ensures that every person present had the opportunity to make requests for
each of the main categories. Furthermore, a large number of possible requirements can be collected
in this way. The facilitators of the workshop should also emphasize several times that it is absolutely
ok to have conflicting requirements for the quality of the software. In this early phase, we want to
explicitly document different views. In order to reach a consensus, it is crucial to understand where
different opinions differ and to what extent.

The following picture shows the rotation model of the second phase:

Visual Collaboration Tools 135

Team rotation in phase 2

Visual Collaboration Tools 136

At the end of the second phase, all participants deserve an extensive (20 - 30 minutes) break. The
workshop should have lasted about two hours now. During the break, the facilitators prepare the
third phase.

Phase 3: Consolidation

The just mentioned preparation of the third phase consists of the identification of double or
competing quality criteria. Exact duplicates are removed from the pinboards by the facilitators and
put aside or stuck to the frame of the respective pinboard. Group competing quality criteria together.
A competing criterion is understood to mean different requirements for the identical subject matter.
Here is an example:

• Group 1: 300 mortgage lending value calculations per hour
• Group 2: 50 mortgage lending value calculations per hour
• Group 3: 2 mortgage lending value calculations per minute between 09:00 and 18:00

All these requirements relate to the identical facts, the required number of calculations of the
mortgage lending value of a property. However, the quantity differs. All these sticky notes are
grouped as follows:

Transition from phase 2 to phase 3

When the participants come back from the break, new groups are formed, which are larger. Ideally,
the new teams should consist of four to six people. Here, too, as with group formation in phase 2,
care should be taken to create teams that are as heterogeneous as possible in terms of stakeholders.
With eight pinboards for the top categories of the quality model, for example, four groups are ideal.

Visual Collaboration Tools 137

After the group formation, the actual consolidation of the quality requirements identified so far and
grouped by the facilitators takes place. Each group of four or six persons then positions itself at a
pinboard and discusses the grouped, competing requirements with the aim of finding a decision or
a compromise. This can be a requirement that is already stuck to the wall or an agreement between
the existing requirements. In any case, it is recommended to mark the decision made. This can be
done, for example, by a new sticky note in a different colour or by marking with another, smaller
Post-It.

Visual Collaboration Tools 138

Selection of quality requirements in phase 3

Visual Collaboration Tools 139

Experience shows that each group needs about 15 - 20 minutes to consolidate the results. After this
time, each team moves on to the next pinboard and starts consolidating from the beginning. Usually,
it is sufficient if each pinboard has been visited and processed by only one consolidation group.
However, heated discussions can arise during consolidation in individual groups. At this point, there
are several possibilities for conflict resolution:

1. Mark several sticky notes as potential candidates with regard to quality requirements and,
at the end of phase 3, have them voted on in the entire plenum by majority vote. This is
undoubtedly the fastest and most time-saving option, but there is a risk that legitimate concerns
may be overlooked by individuals.

2. The second option is to allow other groups to look at the pinboards with divergent opinions.
This is a variant that takes more views into account but can prolong the workshop.

3. The third option is primarily used when one of the other two options does not produce a
result: mark the relevant area as “we need more information” and date the decision backward.
Experience shows, however, that this option opens the door to political stalling tactics after
some time and should, therefore, be used with caution.

4. As an alternative to the third option, it is far better to go out with a hypothesis from the
workshop and then verify it with appropriate metrics. At this point, I always like to define the
metrics that need to be captured in order to make a better decision later.

Visual Collaboration Tools 140

Team rotation in phase 3

Visual Collaboration Tools 141

Phase 4: Prioritization

In the preceding phases, numerous requirements for the quality of software were collected. However,
when making architectural decisions, there is often the possibility that these must be weighed up
between different quality requirements. Thus, an architecture decision can have a positive effect
on certain quality requirements, but on the other hand, it can also have a negative effect on other
quality requirements. Prioritization of requirements gives software architects and developers a more
solid basis for their decisions. This prioritization is the last step in the actual quality storming.

Before prioritization is carried out, the quality requirements sorted out in the consolidation can be
put to the side. In this phase, only the requirements marked in phase 3 count.

Dot voting has proven to be a suitable method for carrying out prioritization: Depending on the
number of collected quality requirements, each participant in the Quality Storming workshop
receives a certain amount of small sticky dots. The amount of sticky dots handed out per person
should be about 15 - 25% of the consolidated quality requirements. Afterward, the workshop
participants are asked to mark their most important requirements with the help of the sticky dots.
As a rule, a person should only stick one dot on a sticky note marked in the consolidation. Another
option would be to allow participants to stick up to two dots on requirements that are particularly
important to them.

Visual Collaboration Tools 142

Dot-voting for prioritizing the requirements in phase 4

Visual Collaboration Tools 143

By the end of the fourth phase, we have gathered a significant number of prioritized quality criteria.

Phase 5: Outlook

The last phase, the outlook, is primarily a summary of the results obtained. It is always advisable
to remind the participants that they now have a lot of requirements that have been collected
and discussed across all stakeholders. Most people probably enjoyed the workshop, as well. Now
the facilitators and the technical participants have to give a short outlook on how the results of
the workshop will be used in the future. In addition, they should also briefly point out which
tangible artifacts will be created in the follow-up work based on the workshop results and where
the participants can find them.

Follow-up work

In principle, it is recommended that the results obtained be transferred to architectural documenta-
tion. Possible options are:

• Transfer towards a quality tree in mind map form
• Transfer towards the corresponding chapters of the arc42 [^ARC42] architecture documenta-

tion
• Use as input for the formulation of formal quality scenarios in the style of https://github.com/arc42/quality-

requirements¹⁵⁴

Why?

Quality Storming enables teams to gather a big amount of quality requirements for the software
they are about to build. The advantage of the method lies in a collaborative modelling and a shared
understanding of these requirements between various stakeholders. Based on the collected and
prioritized quality requirements teams can:

• make better software design decisions
• include this knowledge when deciding for boundaries in their software
• derive proper testing scenarios
• improve their documentation
• more realistically assess the architecture they have built

¹⁵⁴https://github.com/arc42/quality-requirements

https://github.com/arc42/quality-requirements
https://github.com/arc42/quality-requirements
https://github.com/arc42/quality-requirements

Visual Collaboration Tools 144

Authors, attribution and citations

ATAM: https://en.wikipedia.org/wiki/Architecture_tradeoff_analysis_method¹⁵⁵

Alberto Brandolini - Event Storming: https://leanpub.com/introducing_eventstorming¹⁵⁶

Game Storming: https://gamestorming.com/¹⁵⁷

ARC42: https://arc42.org¹⁵⁸

Examples for quality requirements and scenarios: https://github.com/arc42/quality-requirements¹⁵⁹

¹⁵⁵https://en.wikipedia.org/wiki/Architecture_tradeoff_analysis_method
¹⁵⁶https://leanpub.com/introducing_eventstorming
¹⁵⁷https://gamestorming.com/
¹⁵⁸https://arc42.org
¹⁵⁹https://github.com/arc42/quality-requirements

https://en.wikipedia.org/wiki/Architecture_tradeoff_analysis_method
https://leanpub.com/introducing_eventstorming
https://gamestorming.com/
https://arc42.org/
https://github.com/arc42/quality-requirements
https://en.wikipedia.org/wiki/Architecture_tradeoff_analysis_method
https://leanpub.com/introducing_eventstorming
https://gamestorming.com/
https://arc42.org/
https://github.com/arc42/quality-requirements

Visual Collaboration Tools 145

Responsibility Mapping

What is made possible

Form is part of the world over which we have control, and which we decide to shape
while leaving the rest of the world as it is.

—Christopher Alexander

This tool is work in progress and is considered a first draft

To make informed decisions about an object’s responsibilities (Can be anything from a business
capability, to a bounded context, monolith, service and even a class), we should divide form and
context across several dimensions and consider several aspects of the problem. Looking at the several
possible divisions of form (that which we can shape and make whole) and context (that which we
cannot control) sheds light on the problem. You should consider what the real problem is before you
design a solution.

But how many dimensions of a design problem should you consider? Too much digression, and
you never finish. Not enough exploration, and you hack out a solution while potentially missing
a significant opportunity. You need to strike a proper balance. There’s a lot to be gained by taking
quick side excursions from time to time. It is easier to reshuffle responsibilities on cards that it is to
rewrite thousands of lines of code, change bounded contexts, or service boundaries. Responsibility
mapping lets you explore alternatives before you spend a lot of time building the wrong solution.

How to use it

Do not try to design objects to have all the conceivable behavior shown in the real world.
Rather, make software objects only as smart as the application needs them to be and no
smarter.”

—Jon Kern

Responsibilities are general statements about software objects, however we can also apply it to
Business Capabilities, Bounded Contexts and a Software Systems in any form. They include three
major items:

• The actions an object performs.
• The knowledge an object maintains.
• Major decisions an object makes that affect others.

The strategy for assigning responsibilities to objects is very simple: Cover areas that have a big
impact. Look for actions to be performed and information that needs to be maintained or created. You

Visual Collaboration Tools 146

can glean information from several sources, for instance a Business Capability model, a Context Map,
from an EventStorming session or Example Mapping. Responsibilities emerge from these sources
and from ideas about how your software machinery should work. It is important to pick a level at
which to do responsibility mapping. Make explicit what you are exploring to make sure you are
talking about the same kind of objects, i.e. an emerging bounded context or software classes are
quite different.

We record preliminary ideas about candidates objects on CRC cards, CRC stands for Candidates,
Responsibilities, Collaborators (CRC was originally intended to describe classes instead of candi-
dates. We always recommend you look for candidates for, even if you do object-design responsibility
mapping). Candidates are just ideas until they prove useful in your design. These index cards are
handy, low-tech tool for exploring early design ideas. On the unlined side of the CRC card, write
an informative description of each candidate’s purpose and role stereotypes.

Pack of 4-coloured index cards

Getting more specific, flip over the CRC card to record its responsibilities for knowing and doing.
Responsibilities spell out the information that an object must know and the actions that it must
perform. Collaborators are those objects whose responsibility our object calls upon in the course of
fulfilling its own.

Cards work well because they are compact, low-tech, and easy. You move them around and modify
or discard them. Because you don’t invest a lot of time in them, you can toss a card aside with few
regrets if you change your mind. They are places to record your initial ideas and not permanent

Visual Collaboration Tools 147

design artifacts.

Example outcome

Why?

When we shape an object’s responsibilities, we are inventing a form that should fit smoothly
into its environment. We have the luxury of shaping both form and context when we distribute
responsibilities among collaborators.

Authors, attribution and citations

From the book Object Design, Roles, Responsibilities, and Collaboration¹⁶⁰, Rebecca Wirfs-Brock
@rebeccawb¹⁶¹ and Alan McKean, Addison-Wesley, 2003, ISBN 0-201-37943-0

CRC cards from A Laboratory For Teaching Object-Oriented Thinking¹⁶², Kent Beck @KentBeck¹⁶³
and Ward Cunningham @WardCunningham¹⁶⁴

Rebecca Wirfs-Brock (@rebeccawb¹⁶⁵) - author of the article.
¹⁶⁰http://www.wirfs-brock.com/DesignBooks.html
¹⁶¹https://twitter.com/rebeccawb
¹⁶²http://www.inf.ufpr.br/andrey/ci221/docs/beckCunningham89.pdf
¹⁶³https://twitter.com/KentBeck
¹⁶⁴https://twitter.com/WardCunningham
¹⁶⁵https://twitter.com/rebeccawb

http://www.wirfs-brock.com/DesignBooks.html
https://twitter.com/rebeccawb
https://twitter.com/rebeccawb
http://www.inf.ufpr.br/andrey/ci221/docs/beckCunningham89.pdf
https://twitter.com/KentBeck
https://twitter.com/WardCunningham
https://twitter.com/rebeccawb
http://www.wirfs-brock.com/DesignBooks.html
https://twitter.com/rebeccawb
http://www.inf.ufpr.br/andrey/ci221/docs/beckCunningham89.pdf
https://twitter.com/KentBeck
https://twitter.com/WardCunningham
https://twitter.com/rebeccawb

Visual Collaboration Tools 148

User Needs Mapping

Exploring team and service boundaries with User Needs Mapping.

What is made possible

Modern software delivery that focuses on fast flow of change for user-centric systems requires
organizations to re-think how they approach teams and service boundaries. Historically, these were
defined by things like technology, process or architecture. These approaches lead to boundaries
that are not aligned with the flow of change that the users and environment need. We consider that
shifting the focus towards the needs of users brings a different lens to identify better team and service
boundaries. User Needs Mapping (UNM) is a technique in the Team Topologies toolkit¹⁶⁶ that helps
discover candidate service and team boundaries by providing a way to visualize the dependencies
between the components required to meet the users’ needs.

Getting started

A typical UNM workshop will last between 1 to 2 hours and could include leaders, managers and
on-the-ground practitioners (8-15). The key is to include people with sound domain knowledge of
the business.

A UNM session will begin by asking two simple questions: “Who are your users?” and “What are
their needs?”. It is still surprising how many people are unable to answer those seemingly simple
questions concisely. Many people might know who their users are but haven’t actually documented
it or shared it with anyone. UNM uses a simple canvas to begin the documenting process and starts
by capturing users and their needs allowing participants to visualize, align and discuss what they
see. The figure below shows a diagram of this first step of the mapping exercise.

¹⁶⁶https://teamtopologies.com/unm

https://teamtopologies.com/unm
https://teamtopologies.com/unm

Visual Collaboration Tools 149

Capturing users and user needs in a simple visual way

After capturing some user needs, the next phase is mapping the capabilities and dependencies re-
quired to meet those needs. These capabilities tend to be delivered by systems (services, applications,
etc.) that are owned by different teams in the organization.

For this capturing exercise, plot a single vertical axis (y-axis), add a user to the top of the canvas
and then add a single need that is linked to the user. Now, focusing on one need at a time, plot the
“dependency chain” that is needed to satisfy that user need, namely: what service, dependency or
business capability is used to meet that particular need. The vertical (y) axis represents how visible
the capability is to the user.

After drilling down the dependency chain as far as we want, we look at the next user need and repeat
the process. As we do this, we begin to uncover and visualize the dependencies between the services
and capabilities within our organization. The more we do this, the more we might spot patterns
or opportunities to decouple services to provide faster flows of change by using the 4 fundamental
team types¹⁶⁷ provided by Team Topologies.

The 4 fundamental team types are:

• Stream-aligned team: aligned to a flow of work from (usually) a segment of the business domain
• Enabling team: helps a Stream-aligned team to overcome obstacles. Also detects missing

capabilities.
• Complicated Subsystem team: where significant mathematics/calculation/technical expertise

is needed.
¹⁶⁷https://teamtopologies.com/key-concepts

https://teamtopologies.com/key-concepts
https://teamtopologies.com/key-concepts
https://teamtopologies.com/key-concepts

Visual Collaboration Tools 150

• Platform team: a grouping of other team types that provide a compelling internal product to
accelerate delivery by Stream-aligned teams

Using the UNM it is possible to identify opportunities for stream-aligned teams by looking for areas
where there is a clear alignment of dependencies that contribute to meeting a user need. It is also
possible to spot opportunities to introduce other types of teams, such as Platform or Complicated
Subsystem teams, to help reduce the cognitive load of the stream-aligned teams, i.e. is there a single
dependency that is shared by many other components?

An example early stage User Needs Map highlighting potential team boundaries

We can explore grouping differing users or needs to see how the dependency chain changes, which
might prompt questions such as “can we reduce the number of overlapping dependency lines?” and
“is it possible to overlay the Team Topologies team types to highlight where we think some possible
team boundaries might exist?”. The image below shows an example of what this might look like.

Visual Collaboration Tools 151

A User Needs Map after overlaying some initial Team Topologies team shapes

After this initial session, we should seek feedback from people outside the workshop session. After
further discussion, we might decide that we should “drill in” to some areas, such as the website, to
identify which parts of that system might be owned by specific teams and, therefore, might be a
good candidate for stream-alignment - this would be done by repeating the UNM process on a fresh
canvas. The following image shows an example of what this might look like.

Visual Collaboration Tools 152

A zoomed-in view showing the User Needs Map has evolved after identifying potential opportunities for stream-
aligned and platform teams

The above example shows that the database is potentially a shared dependency between the two
stream-aligned teams: this raises a series of questions. Should the data be stored in a single database?
Should it be owned by a database platform team? Is there data that is only relevant to the individual
streams? Could this database be split into two databases provided by a platform but owned by the
streams? Could a Platform team reduce cognitive load by providing simpler ways for the stream-
aligned teams to deploy and run their databases to allow the teams to achieve a faster flow of
change?

After you have completed the User Needs Mapping process and identified some candidate domain
boundaries, you may want to explore using Independent Service Heuristics¹⁶⁸ to validate further
whether they are potentially good boundaries for fast flow.

Rules and principles

The User Needs Mapping process is as follows:

1. Create a list of users
2. Identify user needs per user
3. Identify what capability/component/service is required to meet each user’s need
4. Overlay potential team boundaries using the Team Topologies shapes
5. Annotate the map with questions about unclear dependencies

¹⁶⁸./independent_service_heuristics.md

independent_service_heuristics.md
independent_service_heuristics.md

Visual Collaboration Tools 153

6. Discuss how the dependencies might be broken and capture your thoughts on other ways to
organize the dependencies

Additional information

The Origins of User Needs Mapping

The observant among you might be thinking that this looks a lot like Wardley Mapping¹⁶⁹ (also
available in this book¹⁷⁰), and you would be right. The origins of UNM (and its application with
Team Topologies) are found in the early stages of the Wardley Mapping process.

An example of a Wardley Map

The power of Wardley Mapping lies with its unique ability to capture “movement” over time along
the x (evolution) and y (visibility to the user) axes, i.e. changing the position of an item changes
its meaning on the map and puts the focus of the conversation onto the map. Using this technique,
organizations can capture the “landscape” and “climate” of the competitive marketplace and make
strategic decisions about how the business might evolve over time.

A Wardley Map starts with the customer (and user), the “True North” of the map from which
everything else is anchored. The next step captures which user needs are to be met, followed by
the capabilities that an organization provides in order to meet those needs. By linking users, needs

¹⁶⁹https://learnwardleymapping.com/
¹⁷⁰./wardley_maps.md

https://learnwardleymapping.com/
wardley_maps.md
https://learnwardleymapping.com/
wardley_maps.md

Visual Collaboration Tools 154

and capabilities with dependency relationships, we can see a value chain. This becomes a Wardley
Map when the evolution of items is represented on the map.

The Wardley Mapping process consists of 5 steps:

1. Define Your “True North” (ie Your Customer/User).
2. User’s Needs – Needs to be met.
3. Capabilities – How you’re going to meet your user’s needs.
4. Value Chain – A list of users, needs, and capabilities becomes a value chain when you add

dependency relationships.
5. Wardley Map – A value chain becomes a Wardley Map when you determine how evolved

everything is and position it accordingly (left-to-right) on the evolutionary axis.

The term User Needs Mapping (UNM) captures the first 4 steps as we believe it can provide an initial
perspective for identifying potential team boundaries and issues around them without having to
progress into step 5 and the evolutionary world of Wardley Maps. The term UNM was coined by
Rich Allen¹⁷¹, who, whilst preparing some Team Topologies official Guided Workshops¹⁷², noticed
how useful this can be to carry out discussions about team boundaries - linked with user needs and
streams of value.

Authors, attribution and citations

Matthew Skelton co-author of Team Topologies

Rich Allen Team Topologies Valued Practitioner

http://teamtopologies.com/¹⁷³

https://teamtopologies.com/unm¹⁷⁴

https://teamtopologies.com/key-concepts¹⁷⁵

https://learnwardleymapping.com/¹⁷⁶

¹⁷¹https://teamtopologies.com/all-ttvp/rich-allen-ttvp
¹⁷²https://teamtopologies.com/guided-workshops
¹⁷³http://teamtopologies.com/
¹⁷⁴https://teamtopologies.com/unm
¹⁷⁵https://teamtopologies.com/key-concepts
¹⁷⁶https://learnwardleymapping.com/

https://teamtopologies.com/all-ttvp/rich-allen-ttvp
https://teamtopologies.com/guided-workshops
http://teamtopologies.com/
https://teamtopologies.com/unm
https://teamtopologies.com/key-concepts
https://learnwardleymapping.com/
https://teamtopologies.com/all-ttvp/rich-allen-ttvp
https://teamtopologies.com/guided-workshops
http://teamtopologies.com/
https://teamtopologies.com/unm
https://teamtopologies.com/key-concepts
https://learnwardleymapping.com/

Visual Collaboration Tools 155

User Story Mapping

What is made possible

The best solutions come from collaboration between the people with the problems to solve
and the people who can solve them.

—Jeff Patton, User Story Mapping: Discover the Whole Story, Build the Right Product.

Are you in a company that is customer obsessed – or tries to be – and strives to create solutions that
focus on the user needs and desires? Maybe you even try to build those solutions together with the
customer and their users, involving them in the actual design by building incrementally using mock-
ups, pilots, and MVPs? You have probably wondered how on earth you can design and build a viable
systems portfolio in such a setting, avoiding the risk of throwing together unfinished components
with duct tape, strings, and paper clips, or maybe ending up creating overly complicated solutions
to cater for any future need. There is a lot of talk about evolutionary architecture, but how can we
tie that in with the customer needs? In order to build sustainable systems, we need to know where
the early prototypes are taking us; we need to be able to see further ahead. In short, what can help
us do domain modelling in this highly agile world?

User story mapping is a practice that grew out of the agile community as a way of structuring the user
stories in a narrative as experienced by the end users of the application you are building, telling the
story from their perspective. The insights gained from this visualisation tool, be it product discovery,
domain knowledge, delivery planning, and team collaboration, will then be directly connected to
this focal point, the user experience.

User stories has become a common way of describing what the user wants in many agile approaches,
be it XP where it originated or in the prevalent Scrum framework. Even though it was never meant
as a new way of writing requirements, many teams still struggle with large, unstructured, and one-
dimensional product backlogs of stories written as a detailed wish-list like requirement documents
used to do. It is hard to get a good handle of this list, especially ordering and breaking it up in a good
way to maximise the outcome in a sustainable and consistent way. Mapping the stories to the user
journey, with all the activities and task performed, opens up a new dimension where it becomes a
lot easier to find what needs to be constructed together to make the application usable, split into
viable product increments. The design can then be done in an evolutionary manner, where each step
can potentially be put in front of users, shortening the essential feedback loop.

Visual Collaboration Tools 156

From backlog to story map.

A subtle and important effect of doing this mapping and working with it the whole way from
inception to software delivery is that the design is explicitly connected with the user interaction.
One can no longer just simply gather a long list of requirements from all relevant stakeholders.
Everything must be mapped to some user activity, forcing the designers to view everything from the
user’s vantage point. The user stories concept start making sense then, as it was originally intended;
it is about how it is used, not how it is written. Common patterns used for writing stories, like “as a
<user> I want to <need> so that <goal>”, do not feel that contrived anymore; it becomes explicit in
the story map structure.

The User Story Template.

Visual Collaboration Tools 157

Story mapping is well-suited as a collaborative tool for all stakeholders in the design process,
all the way from the initial ideation and inception, creating coherent customer journeys, via the
construction phase, to the continuous enrichment and maintenance of the product after the initial
deliveries. It covers all three “-ilities” of a product: usable, valuable, and feasible. It makes sense for
service designers as it cover large parts of the customer journey and experience (CX and UX); it is
great for product discovery, making it easy for product managers to describe the intent and purpose
of the product; and it is a great way for technical designers to do domain modelling, creating feasible
solutions by bridging the gap between the problem and solution space.

The Triad.

When modelling and designing technical solutions, the complexity of the problem space is all too
often not captured well enough, leading to naive designs based on existing technical solutions or
reuse of previous experiences by the architects and technical experts. The designs should instead be
driven by a deep understanding of the problem space, for which the story map is a good tool. It gives
the designers the necessary outside-in perspective, guided by the user’s mental model of the product
to be built. This, in addition to the evolutionary design championed by story mapping, enforces an
evolutionary approach to the technical design.

How to use it

As the inventor of the technique Jeff Patton says, story mapping is a “dead simple idea”. In essence it
is telling the story of a user’s experience of the application you are building by using short sentences
on a set of sticky notes placed on a timeline and grouped by the interactions the user has with it.

Preparing the workshop

There are often three distinct phases to story mapping, often split in separate sessions as it may
involve different people:

1. Product discovery: Involves the so-called triad, representing the “-ilities” mentioned above, which
often is a technical person (e.g dev, tech lead, architect, SME), an interaction designer (e.g. UX,

Visual Collaboration Tools 158

service designer), and a product manager representing the business. These three will also represent,
and maybe invite, other stakeholders in the company into the workshop.
2. Release strategy: This can be done as part of the product discovery phase but is often done as a
different session as it may involve different stakeholders more concerned with company strategies
and customer relations.
3. Backlog refinement: This session will involve the whole team responsible for building the
product, including the triad – the product team.

All these sessions should be run by an experienced facilitator and requires a lot of stickies, markers,
and wall space. As the map is something you would like to keep around for quite some time, it should
either be put somewhere it can be kept safe and in easy reach for the people involved, especially the
product team., or, if this is not possible, put it on a large strip of paper that can be moved easily.

The workshop

The outcome of the sessions is a bit different in each of the three phases described above, but the
mapping technique is the same, while at different levels of maturity and detail.

Product Discovery

The main goal of this session is to establishes the full user journey from start to end, constructing
the so-called “backbone” of the story map.

The Backbone.

Details can also be added here, forming some of the “ribs” hanging down from the backbone, but
the focus should be on covering the whole and postponing the detailing to the next phases. Focus
on the story telling, not the writing of user stories, and add stickies to the map with as little text as
possible, only enough to communicate and share the story.

Visual Collaboration Tools 159

The Backbone with Ribs.

For large products several sessions may be needed. The sessions are intense and draining, so split
the work up into smaller sessions rather than having a long one.

Release Strategy

The goal of this session is to split the product into different increments, one building on the other in
an evolutionary design manner, where each increment will provide the feedback needed for product
adjustments and maturing. The first increments could be a Minimum Viable Product (MVP) used to
verify the viability of the product; or it could be an early version that could be tested by a small set
of users; or it could even be as simple as a way for the developer to test some technology, “kicking
the tires”, so to speak.

Visual Collaboration Tools 160

Story Map with Increments.

Create as many increments as make sense but take care of not locking in the steps too hard. One
can easily do with one increment at the time, having a “doing” and “todo” slice. Consider having an
explicit user goal for each increment, as that will help you making a slice that makes sense to the
user.

Backlog Refinement

This session is held as often as the product team wishes, like at the start of each sprint if Scrum is
used. The whole team participates here, or at least everybody involved in building the product,
like developers, testers, and POs. The goal is detailing the increment to be built, like slicing,
decomposing, and detailing the user stories to a level that suits the team, including identifying the
acceptance criteria used for testing and setting definition of done. The stories should now be ready
for implementation and this is where the user stories moves from describing a user need to becoming
a delivery artefact, e.g. the stories can be taken into the sprint backlog or a Kanban board.

Visual Collaboration Tools 161

Stories in a Kanban board.

Why?

When engineers think of “the customer” in the abstract instead of as a real person, you
rarely get the right outcomes.

—Gene Kim, The Unicorn Project

Although user story mapping is mainly a product discovery and development tool, it can also be
beneficial for domain modelling as it describes the problem space in a very clear and holistic way. It
enables us to create solutions that matches the user’s mental model if so inclined. No longer endless
and one-dimensional lists of user stories that makes it hard to see the wood for all the trees.

Purposes

The benefits of this practice can be summarised as follows:

• Makes writing user stories easier as they are discovered while creating the narrative, with the
user goals, activities, and tasks, forming a solid backbone to which the individual user stories
can be attached.

• Getting away from the one-dimensional backlog, mapping every story to the backbone that
forms the user narrative that defines the what, while the individual user stories can define
optional how.

• Splitting the delivery in iterations, based on user outcome.
• Designing the product on explicit user needs, using user roles and personas.

Visual Collaboration Tools 162

• Creating a full user journey, bridging the gap between business, UX, and software.
• Makes modelling the solution on the user’s mental model easier, e.g.:

– Identifying the ubiquitous language.
– Seeing what data needs to be shown together and saved together, help identifying bounded

contexts.
– Identifying data that needs to be transactionally bound and what can be eventually

consistent.
– Finding aggregates, with its data and invariants.

Tips and Traps

• Understand what a user story is and what it is used for:
– Not a new way of writing requirements.
– Defines the user need.
– Can be used for delivery, attaching acceptance criteria.

• Make sure all participants are engaged and all voices are being heard:
– No distractions like computers and phones.
– Psychological safety.
– Have frequent breaks and keep the sessions short (2 hours is good).
– Have snacks and drinks.

• The sessions are intense so make sure the environment is optimal:
– Large and light room with good air quality.
– Remove chairs and tables; the maps get large quickly and working on a wall is most

practical.
• In order to avoid the phases above becoming hand-overs in a waterfall-like process, all the

participants should come from the same product team, including the triad in the initial phases.
They should obviously collaborate with all stakeholders, some which may be involved in
creating the map, but the core should be people from the product team.

• If your company is not organised as product teams, try to run the sessions as if you were.
• Limit the number of participants, especially for the discovery phases; 3-5 seems to work best.
• Start by building the overall user journey in a timeline before detailing and structuring it in

goals, activities, tasks, and options.
• Consider using a storming approach initially, where everybody is writing stories on their own

first and you all go through them afterwards and build a narrative you all agree on. This also
help getting everybody engaged and heard.

• The user goal is not part of the original story mapping as described by Jeff Patton but used
properly it makes it easier to understand the user need and enables having different solutions
to the same user goal.

• When defining the increments, start with a specific goal for each step. This makes it easier to
limit its scope and avoid creating increments that does not give any feedback and outcome, like
testing options on some users (A/B testing) and checking the feasibility of a technical solution.

Visual Collaboration Tools 163

Authors, attribution and citations

• User Story Mapping was developed by Jeff Patton in 2004 and described in detail in his book
from 2014 User Story Mapping: Discover the Whole Story, Build the Right Product¹⁷⁷

• Jeff Patton and jpattonassociates.com¹⁷⁸
• Author: Trond Hjorteland¹⁷⁹ (scienta.no¹⁸⁰) with experiences from a diverse set of clients, both

public and commercial.

¹⁷⁷https://www.jpattonassociates.com/jeff-pattons-book-released-user-story-mapping/
¹⁷⁸https://www.jpattonassociates.com/user-story-mapping/
¹⁷⁹https://www.linkedin.com/in/trondhjort/
¹⁸⁰https://www.scienta.no/

https://www.jpattonassociates.com/jeff-pattons-book-released-user-story-mapping/
https://www.jpattonassociates.com/user-story-mapping/
https://www.linkedin.com/in/trondhjort/
https://www.scienta.no/
https://www.jpattonassociates.com/jeff-pattons-book-released-user-story-mapping/
https://www.jpattonassociates.com/user-story-mapping/
https://www.linkedin.com/in/trondhjort/
https://www.scienta.no/

Visual Collaboration Tools 164

The Wall of Technical Debt

Mathias Verraes

“Technical debt” is a metaphor for all software design choices that turn out to be suboptimal, no
longer valid, or just plain wrong. These choices incur a cost on future development, and the shortcuts
taken today will later slow you down until you “pay back” the debt by fixing the problems. And it’s
not only code: Artifacts like architecture, documentation, tests, and domain models can all suffer
from technical debt.

Technical debt can severely drag down development. And paying back all debt by replacing all
software isn’t usually very feasible either. But, like financial debt, technical debt is not always a bad
thing. Debt allows you to invest in something before it makes money. Taking shortcuts when
bringing a product to market allows you to test a business model cheaply, and it makes it easier to
throw away the code if it turns out to be a bad idea. And often, the debt exists because the business
has grown and evolved, and the design choices that were valid early on no longer are.

All this to say that the problem isn’t technical debt; it’s unmanaged technical debt. In any company,
the CFO knows exactly how much financial debt there is. There are spreadsheets, quarterly reports,
payment plans, and options to refinance or sell debt. But ask your CTO how much technical debt
your organization has, and you’ll get an awkward “uh… a lot?” as an answer.

So how do you manage debt in a fast-moving agile project?

The Wall of Technical Debt is a surface in your office where you visualize issues on sticky notes.
It’s easy to start and maintain, and yet it has a profound impact on how you choose to add, reduce,
pay back, or ignore debt. It’s by no means intended as a complete solution to scale the management
of debt, but it works precisely because it requires no buy-in.

Creating Your Own Wall

Creating your own Wall of Technical Debt is simple: Make the debt visible, build a habit, negotiate
regularly, and give away control.

Visual Collaboration Tools 165

Make It Visible

Example of a Wall of Technical Debt by [Pim Elshoff](https://twitter.com/Pelshoff/status/1220291781188866049?s=20)

Pick a wall in the space where your team works. Make sure it’s publicly visible. Label it the “Wall of
Technical Debt.” Draw a nice dramatic logo. Make sure there are sticky notes and markers around
so people can easily add to it.

Build a Habit

Whenever you work on code and encounter technical debt:

• Ask yourself: What made you slow? What made the code difficult to understand? What
caused a specific bug to be hard to track down?What should have been better documented
or tested? Write down any technical debt you encountered on a sticky note. Keep it short, but
make sure you’ll be able to understand it later.

• Estimate the opportunity cost, i.e. the time you would have spent on something else if the
issue at hand didn’t exist. Write it on the sticky note. Agree on a notation for time, such as
tally marks or dots per half day. Being visual is more important than being precise.

Visual Collaboration Tools 166

• Estimate how long it would take to fix it, and write that down as well.
• Optionally, write down how to fix the technical debt. You’ll probably want to do this part in

an issue tracker, so if you do, write the issue ID on the sticky note.
• Put the sticky note on the Wall of Technical Debt.
• Whenever someone runs into the same issue, add more marks to represent the time they lost.
• Over time, you’ll want to add some categorisation and structure. Let these emerge, resist

organising it prematurely.

Don’t forget to also add sticky notes whenever you introduce new technical debt yourself. And be
honest. There’s no shame in this, because you are not your code. Remember technical debt is an
investment, not a crime — unless you’re hiding debt, in which case you’re cooking the books!

When this becomes a habit, the wall becomes an information radar of the state of your system.

Negotiate Regularly

As the Wall of Technical Debt grows, people in your organization might get a little nervous. That’s
OK! The debt was always there; you only made it visible. Hopefully some of the habits start changing.

Whenever someone gets up to add another dot to an existing sticky note, discuss it with the team.
Compare the cost of the measured wasted time to the estimated time to fix the debt. Sure, it might
take a day to fix the code, but if you keep losing two hours over it every week, the time spent fixing
it will pay for itself soon enough.

Or, perhaps fixing it isn’t worth it. That’s no longer a matter of aesthetics or opinion. Rather, it’s a
matter of empirically collected metrics. Congratulations, you’re negotiating tradeoffs as a team.

Meanwhile, when someone adds a sticky for newly discovered existing debt, consider if it’s
something the team could fix right away. Of course, it’s perfectly fine to put it on the wall; that’s
what it’s there for. However, when you’re introducing new debt, it’s different. Consider if the team
could choose not to take the shortcut and instead fix the code while it’s still cheap. The question
shouldn’t be “Do we have time now?” It should be “Is it worth paying interest on this later? How
much?” The answer could range anywhere from “It doesn’t matter, just commit it,” to “Lots of things
will depend on this, so let’s get it right before moving on.”

The point is not to fix all technical debt. The point is to learn to negotiate when to add it, when
to fix it, and when to avoid it. Before, this happened mostly invisibly: Individual team members
added or fixed debt without knowing all the facts. Now, the collective brain power of the team can
be applied, using real data.

Give Away Control

Now we get to the real magic. Because the Wall of Technical Debt is so visible, managers should
start to take notice. (If they still don’t, use a fat red marker to add some € or $ signs to the Wall.
Money is the universal language, and lost money stings twice as hard.)

Visual Collaboration Tools 167

Normally, when a team asks for time to spend on technical debt, there’s no direct tangible benefit
to the users or the business. A manager can’t decide whether those fixes are of critical importance,
an attempt to play with shiny new tech, or a desire to have prettier code. Even for a manager with
a deep technical background, if they’re not directly involved with the code, it’s impossible for them
to judge the importance of a fix.

But with the Wall of Technical Debt, it’s different. Now it’s not about opinions. It’s not about
the desire to be a craftsperson who writes elegant code. It’s not about solving challenging puzzles.
This time, it’s about facts, numbers, debt and interest payments, and returns on investment. You’re
speaking the manager’s language. Good code as an asset, bad code as a liability. They’re trained
to look at the numbers and make decisions. They’ve got the methods for it: CBA, OODA, PCDA,
SWOT, …

So now, give away control. The manager knows more about the company strategy, the budgets, the
risks. Let them decide, with your help, what to fix and when to plan it. The numbers enable that.

Tips and Traps

• Don’t start with a complete audit of all your debt. Sure, you could spend a few days identifying
all debt. But then you need to get buy-in, and set up dates, and you’re making it a big
thing. “We’ll do it during Summer” or “after the big project is finished” or whatever the local
euphemism for “never” is. Instead, a single sticky note on the wall today brings value today.
You can always do your big audit later; just don’t make it a bottleneck.

• Without tally marks or dots that represent real incurred costs, you’re back at opinion, and
some of the things that bother you may not actually impact future development. This is why
real-time tracking is important. By only adding problems when you run into them, your Wall
of Technical Debt will represent actual time wasted and not aesthetic problems with no impact
on development. This is important because you want to build a habit of negotiating debt, and
not simply make a one-off effort and then go back to the old ways.

• It works the other way around as well. If you encounter ugly or strange code but you didn’t
lose any time over it, don’t mark it. We’re not measuring whether you like it, only whether it
costs time.

• Don’t skip the physical wall. Resist the urge to put everything in a digital tool such as a bug
tracker. Logs and metrics only have an impact when people look at them. Digital tools make it
easy to hide things, whereas the wall is visible — confrontational even.

Conclusion

I started writing and speaking about the Wall of Technical Debt in 2013, after my team and I had
developed a first version. One of the first companies that adapted our approach, was a small startup
I was consulting for. The little wall space they had was already used by business plans and app
mockups. So the team put the sticky notes on the office’s only window. The joke became that
whenever the room got too dark, they knew it was time to refactor!

Visual Collaboration Tools 168

More importantly, they had been stuck alternating between perfectionism and hacking things to get
to market faster. The Wall of Technical Debt helped them break out of that cycle, and they launched
soon after. I’ve since heard stories of teams in all sorts of companies using it successfully. Perhaps
you could be next.

Authors, attribution and citations

Based on “Managed Technical Debt”, Verraes 2013¹⁸¹. Thanks to Indu Alagarsamy and Rebecca Wirfs-
Brock for reviewing the draft.

Mathias Verraes | @mathiasverraes¹⁸² | verraes.net¹⁸³

Mathias Verraes runs a boutique consultancy that advises organisations on designing and modelling
software for complex environments, including architecture, analysis, testing, and refactoring “un-
maintainable” systems. He has worked with clients in Government, Logistics, Mobility, Energy, E-
Commerce, and more. He teaches Domain-Driven Design courses and curates the DDD Europe
conference. When he’s at home in Kortrijk, Belgium, he helps his two sons build crazy Lego
contraptions.

Image by Pim Elshoff¹⁸⁴

¹⁸¹http://verraes.net/2013/07/managed-technical-debt/
¹⁸²https://twitter.com/mathiasverraes
¹⁸³https://verraes.net
¹⁸⁴https://twitter.com/Pelshoff/status/1220291781188866049?s=20

http://verraes.net/2013/07/managed-technical-debt/
https://twitter.com/mathiasverraes
https://verraes.net/
https://twitter.com/Pelshoff/status/1220291781188866049?s=20
http://verraes.net/2013/07/managed-technical-debt/
https://twitter.com/mathiasverraes
https://verraes.net/
https://twitter.com/Pelshoff/status/1220291781188866049?s=20

Visual Collaboration Tools 169

Wardley Maps

Wardley Maps provide a way to visualise, communicate, review, and implement a Strategy in an
organisation or department.

What underpins Wardley Maps is the Strategy Cycle that’s derived from Sun Tzu’s five factors of
the Art of War¹⁸⁵ and John Boyd’s OODA (Observe, Orient, Decide, Act)¹⁸⁶ loop. Notice the arrows.

The Strategy Cycle

The table below portrays the Strategy Cycle in another format and highlights what’s encompassed
in the terms “context” and “environment” or “situation awareness”.

¹⁸⁵https://en.wikipedia.org/wiki/The_Art_of_War
¹⁸⁶https://en.wikipedia.org/wiki/OODA_loop

https://en.wikipedia.org/wiki/The_Art_of_War
https://en.wikipedia.org/wiki/OODA_loop
https://en.wikipedia.org/wiki/The_Art_of_War
https://en.wikipedia.org/wiki/OODA_loop

Visual Collaboration Tools 170

Strategy Cylce portrayed as a table

Terms and definitions

Sometimes, the term “Wardley Map” is used in two senses:

• The first sense is to use “Wardley Map” to mean the “Landscape” as described in the table above.
Such a Map consists of Components that make up an organisation, their position relative to an
anchor, and how they change (not so much over “time” but how “ubiquitous and certain”
they become).

• Another broader sense is to use the term “Wardley Map” to refer to the whole Strategic Cycle.
Such a Map would also incorporate the other factors (Climate, Doctrine, and Leadership)

For this section of the book, we’ll use the term “Wardley Map” in the first sense.

A Wardley map consists of the following:

(1) Components. These are the building blocks of an organisation. There are at least four types of
Components:

• activities (things we do)
• practices (how we do something)
• knowledge (how we understand something)
• data (how we measure)

In the act of doing something, an organisation uses all these four components to produce something
that will fulfill a need of a user. Therefore, the “user need” acts as an anchor to all these
components. Furthermore, each component is not entirely independent; some are prerequisites of
others. And being prerequisites, they may not be visible to the User. As such, all components are
positioned relative to the anchor.

Let’s use an example of a tea shop.

• As a user, my need is to have a cup of tea.

Visual Collaboration Tools 171

User with User Need

• What’s needed in order for the tea shop to provide that? They need a cup, tea, hot water, and
someone to prepare it and serve it.

User with User Need and top-level components that meet that need

• What’s needed in order to provide hot water? water and a kettle. For the kettle to boil the water,
it needs some kind of power.

Visual Collaboration Tools 172

Value chain with less visible components

• The underlying components provide value to the components above them. Each component
depends on the value they get from other components. Hence the name “Value Chain”.

(2) For a component’s position to be relative to the anchor of “user needs” means that as each
component is broken down into much smaller components that the component itself needs, the
underlying components become “invisible” to the User. This is represented on the Y-axis.

• The User doesn’t “see” or “even care” about the kettle or the power being used.
• What the User “sees” or “cares about” is at the top. What the User doesn’t see or “care about”

is at the bottom. What’s at the top is “visible” to the User; what’s at the bottom is “invisible”.

Visual Collaboration Tools 173

• The position of the components is visualised as a Chain on the Y-axis

Value chain with Y-axis

(3) These components are not static but change. This is visualised in Wardley Maps and termed
“Evolution.”

All components change. Each type of component also changes. As they change, they take on different
characteristics. And we deal with them in different ways.

Visual Collaboration Tools 174

This change on a Wardley Map is termed “Evolution” and is based on the evolution graph¹⁸⁷ whose
Y-axis is “Ubiquity” and X-axis is “Certainty.” It models how a component changes not against
“time” but by how “ubiquitous and common” the component was. That is, how commonplace
the component was (ubiquity) and how well understood, defined, and standardised (certainty) the
component was.

Evolution Graph

It differs from how innovations spread through cultures, which is modeled as percentage adoption
(on the Y-axis) over time (on the X-axis). This was made popular through Moore’s book “Crossing
the Chasm” which builds on Robert Everett’s work “Diffusion of Innovation”. If you’d like to read
more about these differences and their implications, I’d recommend reading from Figure 72 of the
online book¹⁸⁸.

It’s important to keep this distinction in mind because both have the same S-curve. It reminds us
that Ubiquity for a similar product depends on its market. For an iPhone, it’s in the “Commodity”
stage when 90% of the population own at least one. Whereas a gold bar is in the “Commodity” stage
e when less than 1% of the population own one.

¹⁸⁷https://blog.gardeviance.org/2012/03/tens-graphs-on-organisational-warfare.html
¹⁸⁸https://medium.com/wardleymaps/finding-a-new-purpose-8c60c9484d3b

https://blog.gardeviance.org/2012/03/tens-graphs-on-organisational-warfare.html
https://medium.com/wardleymaps/finding-a-new-purpose-8c60c9484d3b
https://medium.com/wardleymaps/finding-a-new-purpose-8c60c9484d3b
https://blog.gardeviance.org/2012/03/tens-graphs-on-organisational-warfare.html
https://medium.com/wardleymaps/finding-a-new-purpose-8c60c9484d3b

Visual Collaboration Tools 175

As each component evolves, it goes through four stages, Stage 1 to Stage 4. This path of evolution is
referred to as “commoditisation”.

• For an Activity, it starts as an innovation, its “Genesis” (e.g. the first battery, the first
phone, the first television, the first computer) and then how “Custom built” examples are
made, followed by a stage of “Product development” (constantly improving generators,
phones, televisions, computers), the introduction of Rental models for the activity. And finally,
“Commodity” provision (and where appropriate) Utility services for provision.

• For a Practice, it starts as a “Novel”, then its “Emerging”, it becomes “Good”, and finally
“Best”.

• For Knowledge, it starts as a “Concept”, then “Hypothesis”, then a “Theory” and finally it’s
“Accepted”.

• For Data, it starts as being “Unmodeled”, then “Divergent”, then “Convergent”, and finally
it’s “Modeled”.

The table below summarises them.

Types and stages of evolution

Evolution is represented on the X-axis. A Wardley Map of the tea shop would look something like
this:

Visual Collaboration Tools 176

Value Chain with Evolution

One final aspect to note is that a component on a Wardley Map can itself be a whole Wardley Map
in itself. Referring back to the tea shop, “Power” is a single component on that map. But for an
energy producing organisation, this single component is a whole Wardley Map in itself that may
encompass different ways of generating energy. The level of detail depends on your context and
whether it helps you make decisions and act.

What is made possible

Wardley Maps as a common language

Wardley Maps become the language to communicate the Strategy and its implementation. The
strategy is made visual.

Because everyone is using the same language (the map and its symbols), communication is taking
place. The problem of language is visible when different departments are trying to talk to one
another: Finance uses their own terminology, so does HR, Engineering, IT, and so on. Even the
book, “Domain Driven Design” begins by addressing the need of a common language.

As more information is added to the Wardley Map, it enables different departments to communicate
using the map itself as a common language. One such example is from from Dr. Alistair Moore
(@latticecut¹⁸⁹) below.

¹⁸⁹https://twitter.com/latticecut

https://twitter.com/latticecut
https://twitter.com/latticecut

Visual Collaboration Tools 177

More detailed map for all departments

Because they’re visual, they’re easier to understand. Thus affording a way for others to challenge
the underlying assumptions of the Map. Furthermore, discussions on where and what to focus on
or which direction to take are open to all to participate in.

Since the map depicts evolving components, it can be saved and later reviewed to check whether
the strategy and its implementation had the intended effects.

No one-size fits all but use appropriate methods

Since each stage of evolution exhibits different characteristics, the way we deal with components in
each stage also differs.

The way we manage and deliver them differs. We expect those in Stage 1 to be less certain and
therefore, always changing. So agile approaches are suitable, such as Extreme Programming. On
the other hand, those in Stage 4 are more certain, they don’t change as often (and we don’t want
them to) and so methods that reduce deviation, such as Six Sigma, would be more appropriate. In
between the two extremes, the components are becoming more stable - what to produce is known
and so methods such as Lean or Minimum Viable Product (MVP) work well.

The way we hire and retain people for these activities also differs. They may be in IT or Finance or
HR yet, if their activities are in Stage 1, they’ll have the same view: that of experimenting to make
the impossible (referred to as “Pioneers”). Those in Stage 2 and 3 focus on continual improvement

Visual Collaboration Tools 178

to make the best (“Settlers”). And those in Stage 4 want to comoditise components focusing on
operation efficiency (“Town Planners”). Knowing that influences the kind of team structure that
we’ll have.

The way we buy them, consume them, and account for them also differs. So there would be different
methods for Purchasing and Accounting based on the stage of evolution a component is in. For more
information, refer to Figure 249 of Simon Wardley’s article “On playing chess¹⁹⁰”.

Anticipate and deal with inertia

Another important part is that we can anticipate when and where we don’t want to change, in
other words, our own inertia and address it. So far, there are about forty kinds of inertia that an
organisation and its environment can suffer from.

How to use it

Wardley Maps span a wide area, vary in their level of detail, and are useful at different layers of
the organisation. Each layer of the organisation has different spans of control and work on different
timescales. Yet, each faces these common problems as Simon Wardley¹⁹¹ outlines in an article on
Stopping Self harm in Corporate IT¹⁹²:

• duplication. Examples of 100+ projects doing exactly the same thing in an organisa-
tion are not uncommon

• bias. Lots of custom building that which is already a commodity
• miscommunication and alignment issues
• constant restructuring to bolt on new capabilities followed by further restructuring

to remove it
• constant missed opportunities where obvious changes are not taken advantage of.

Even at the unit in an organisation, that of a team - say, a Software Development team, we can rid
ourselves of the bias of custom building components, such as our own logging framework and use
an existing library instead.

Timing

As for timing, the workshops can be run as often as is needed. Subsequent workshops should build
on the first one in order to fill in any missing details on the Map or to review what’s changed due
to your actions or those of the market.

¹⁹⁰https://medium.com/wardleymaps/on-playing-chess-2634b825dbac
¹⁹¹https://twitter.com/swardley
¹⁹²https://blog.gardeviance.org/2016/05/stopping-self-harm-in-corporate-it.html

https://medium.com/wardleymaps/on-playing-chess-2634b825dbac
https://twitter.com/swardley
https://blog.gardeviance.org/2016/05/stopping-self-harm-in-corporate-it.html
https://medium.com/wardleymaps/on-playing-chess-2634b825dbac
https://twitter.com/swardley
https://blog.gardeviance.org/2016/05/stopping-self-harm-in-corporate-it.html

Visual Collaboration Tools 179

Focus

The focus varies depending on the goals of the participants. Ideally, going through the whole Strategy
Cycle would be worthwhile. But if that’s not possible, then the initial focus would be on getting to
know our users, their needs, how we satisfy them. Thereafter, getting to reducing duplication and
bias.

Then we learn some elements of Doctrine and Climatic Patterns to anticipate changes to components
of the resulting map and how to adapt to them.

Preparation for the workshop

• A group of people who know your context: product and organisation.
• Post-It Notes of different colours.
• Different colors of string.
• Pen Markers.
• Print out the following cheatsheets to hand out to participants:

– Evolution Cheatsheet¹⁹³
– The Doctrine cheatsheet in this Google Sheet¹⁹⁴
– The Climatic Patterns cheatsheet in this Google Sheet¹⁹⁵

The Workshop

These steps are taken from Simon Wardley¹⁹⁶’s article, “Finding a path¹⁹⁷”.

This usually takes about 30 minutes to an hour or two, if participants are learning and getting to
know the basics of Wardley Maps.

• Purpose (should be time-boxes.) - what’s the purpose of your organisation or team? Why do
others need you or work for you?

• Users and User Needs
– Examine what you provide to others that they value, i.e., a list of transactions with others.

From this, you’ll discover who your users are and what need you’re fulfilling for them.
The focus is on their needs not yours.

– Write down each User Need on a Post-It.
– Place them on a whiteboard (ideally a wall) in fairly random order.
– Work out a user journey to understand what steps your users take to have this transaction

with you. Techniques such as “User Story Mapping”, “User Journeys” are useful to use.

¹⁹³https://aws1.discourse-cdn.com/business4/uploads/wardleymaps1/original/1X/acb8295675fb76d878d823b82492c2ead029efd1.jpeg
¹⁹⁴https://docs.google.com/spreadsheets/d/1iUjZTCCv1KsgQ5VNohtU1c3BpW7pwh7N_FDgJimjHF8/edit#gid=0
¹⁹⁵https://docs.google.com/spreadsheets/d/1iUjZTCCv1KsgQ5VNohtU1c3BpW7pwh7N_FDgJimjHF8/edit#gid=21887705
¹⁹⁶https://twitter.com/swardley
¹⁹⁷https://medium.com/wardleymaps/finding-a-path-cdb1249078c0

https://aws1.discourse-cdn.com/business4/uploads/wardleymaps1/original/1X/acb8295675fb76d878d823b82492c2ead029efd1.jpeg
https://docs.google.com/spreadsheets/d/1iUjZTCCv1KsgQ5VNohtU1c3BpW7pwh7N_FDgJimjHF8/edit#gid=0
https://docs.google.com/spreadsheets/d/1iUjZTCCv1KsgQ5VNohtU1c3BpW7pwh7N_FDgJimjHF8/edit#gid=21887705
https://twitter.com/swardley
https://medium.com/wardleymaps/finding-a-path-cdb1249078c0
https://aws1.discourse-cdn.com/business4/uploads/wardleymaps1/original/1X/acb8295675fb76d878d823b82492c2ead029efd1.jpeg
https://docs.google.com/spreadsheets/d/1iUjZTCCv1KsgQ5VNohtU1c3BpW7pwh7N_FDgJimjHF8/edit#gid=0
https://docs.google.com/spreadsheets/d/1iUjZTCCv1KsgQ5VNohtU1c3BpW7pwh7N_FDgJimjHF8/edit#gid=21887705
https://twitter.com/swardley
https://medium.com/wardleymaps/finding-a-path-cdb1249078c0

Visual Collaboration Tools 180

– It’s common for new unmet needs to be described at this point, don’t add them to the wall
but instead take a note as these represent new opportunities.

• Value Chain
– For each need, write on a different colour of post-it notes, the top-level components that

meet the need. Techniques from the “Business Capability Model” are useful.
– From this list any subcomponents that the top-level component will use including any

Data or Practices or Activities should be written down.
– When the group is satisfied that the components for all needs have been written, then take

the User Needs on the wall and discard them.
– Now write on the wall, a single vertical line and mark it ‘value chain’.
– The top-level components should now be added to the wall at the top of the value

chain and the sub-components placed underneath with lines drawn (or threaded) between
components to show how they are linked.

– Once the group is satisfied that they’ve successfully described the value chain then take a
picture of the wall and remove everything.

– Sometimes, through describing the Value Chain, the organisation’s purpose becomes
clearer.

• Evolution
– On the wall, now draw two lines - a vertical line for value chain and a horizontal line for

evolution, marking on lines for genesis, custom built, product and commodity.
– Start to add the value chain that you previously created beginning with the top-level

components.
– For each component, ask in which stage of evolution is it in?

* How ubiquitous and well defined is the component?
* Do all my competitors use such a component?
* Is the component available as a product or a utility service?
* Is this something new?

– Use the Evolution Cheatsheet to workout in which stage of evolution to place a component.
– Where there is disagreement over a component then it can be broken into two or more

subcomponents. Some subcomponents might be more evolved but some might be less
evolved.

– Where disagreement persists between groups on an identical component always treat
it as the more evolved. But keep a note on such components - they might be useful in
determining areas where to make efficiency gains.

• Doctrine
– Use the cheatsheet for Doctrine.
– Pick a couple and apply them to yourself, such as:

* “Are we using a common language?”
* “Are we challenging our assumption?”
* “Do we know who our users are?”

Visual Collaboration Tools 181

* “Do we know what their needs are?”
* “How do we go about removing duplication and bias?”

• Climatic Patterns
– Use the cheatsheet for Climatic Patterns. Pick a couple and apply them to components of

the map.
– One example to start with is “Everything evolves through supply and demand” and

“Components co-evolve.” This leads us to ask
* “which components are about to evolve from one stage of evolution to another?”
* “What effect on Activities/Practices/Data will this component have once it moves to

another stage?”
• Decide and Act: while deliberate on what to do next, use other techniques (Impact Mapping,

SWOT) to help make a decision amidst several options that are now present.
• After we decide, we keep the maps we’ve created to review them or add to them in the following

workshops.

Why?

Speaking of the aim or purpose of Strategy, Frans Osinga quotes John Boyd¹⁹⁸ telling us that it’s

to improve our ability to shape and adapt to unfolding circumstances, so that we (as
individuals or as groups or as a culture or as a nation-state) can survive on our own
terms.” (Osinga, Frans P.B. “Strategy, Science, and War”, 217-218. Oxon: Routledge 2007.)

That’s what Wardley Maps help us do in the context of business organisations.

• If we know the “Landscape” in which we operate, we have something to observe and
something to visually communicate it to others, especially the things that might change.

• If our actions are guided by “Doctrine”, then we’re likely to be more effectively organised than
others.

• If we know the “Climatic Patterns”, we’ll be able to anticipate change or even shape the
unfolding circumstances.

• If we know what “Gameplays” to make for our context, we’ll be able to make the most of it
on our own terms.

Authors, attribution and citations

Simon Wardley (@swardley¹⁹⁹) - creator of Wardley Maps and author of the online book on
Medium²⁰⁰

¹⁹⁸https://en.wikipedia.org/wiki/John_Boyd_%28military_strategist%29
¹⁹⁹https://twitter.com/swardley/
²⁰⁰https://medium.com/wardleymaps

https://en.wikipedia.org/wiki/John_Boyd_(military_strategist)
https://twitter.com/swardley/
https://medium.com/wardleymaps
https://medium.com/wardleymaps
https://en.wikipedia.org/wiki/John_Boyd_(military_strategist)
https://twitter.com/swardley/
https://medium.com/wardleymaps

Visual Collaboration Tools 182

Chris Daniel (@wardleymaps²⁰¹) - creator of the online course for Wardley Maps²⁰²

Ben Mosior (@HiredThought²⁰³) - creator of the website that helps people get started - https:
//hiredthought.com/wardley-mapping/

John Grant (@jhngrant²⁰⁴) - maintains the awesome list of Wardley Mapping resources²⁰⁵

Julius Gamanyi (@juliusgb2k²⁰⁶) - contributed this article.

²⁰¹https://twitter.com/wardleymaps
²⁰²https://learn.leadingedgeforum.com/courses
²⁰³https://twitter.com/HiredThought
²⁰⁴https://twitter.com/jhngrant
²⁰⁵https://github.com/wardley-maps-community/awesome-wardley-maps
²⁰⁶https://twitter.com/juliusgb2k

https://twitter.com/wardleymaps
https://learn.leadingedgeforum.com/courses
https://twitter.com/HiredThought
https://hiredthought.com/wardley-mapping/
https://hiredthought.com/wardley-mapping/
https://twitter.com/jhngrant
https://github.com/wardley-maps-community/awesome-wardley-maps
https://twitter.com/juliusgb2k
https://twitter.com/wardleymaps
https://learn.leadingedgeforum.com/courses
https://twitter.com/HiredThought
https://twitter.com/jhngrant
https://github.com/wardley-maps-community/awesome-wardley-maps
https://twitter.com/juliusgb2k

Field Stories for a tool
An Impact Mapping Workshop to Make Out The Right
Decision Between Hundred Possibilities

Being part of a start-up means a lot of pressure, not enough time and a bet on the
future. Impact mapping helps to get everybody to focus on the same goal and gives a
structure how to find and decide about the best approach to achieve it.

Written by Krisztina Hirth (@YellowBrickC)

In 2019 I have worked at a small start-up in the insurance industry. We had our first product already
online and we had a relatively good image how our customers behave. We were aware that our
biggest bottleneck is customer contact. We were able to handle it now, but we were preparing the
launch of a huge insurance product which will raise the number of contacts drastically. The question
was: how we can control or prevent the chaos.

It was the perfect moment for impact mapping²⁰⁷.

Participants: the whole company. We were about 15 people with very different background and
focus: marketing people, social media managers, HR representative, developers and data scientists,
partly with deep knowledge in the insurance business and some without these insights. It is a
seldom situation which I always appreciate because it tells a lot about the company: what culture
is nurtured? One of open mindedness and curiosity about everyone’s opinions or one of “I am the
boss, I know it better also I don’t need/want any discussions”.

Timeslot: the workshop took about two and a half hours, but we finished only the second step out
of four. The other two steps were planned to follow in smaller teams, working towards one of the
defined goals.

Step 1: Goal

We have followed the steps from the book and we made discoveries at every step! The most important
one was that most people had different goals in mind.

In a discussion with the CEO afterwards he said he was very pleased. The workshop was
really cool and informative and surprising sometimes

²⁰⁷https://www.impactmapping.org/

https://www.impactmapping.org/
https://www.impactmapping.org/

Field Stories for a tool 184

and he had no idea that we are not working towards the same goal.

We found out that there are a lot of goals which cannot be acheived at the same time obviously.
Some of the goals wer short time goals, other were good as medium or long time goals. All of them
were written on post-its and We split them up by the targeted time. As the company was composed
of three teams we also selected the three next goals, one for each team.

Having all these insights worked out together and visualized on a wall helped everybody to have
the right focus and concentrate on the same thing.

What is a goal without alignment? It is only a sentence on the paper, it’s not a goal. A
goal is defined by understanding and alignment.

Measurability

The two most important elements of these technique are visualization and measurable goals. Most
companies I know having this kind of shared goals or objectives don’t think about measurability, so
the goals become rather wishes or hopes. Without metrics defined beforehand a company can invest
a lot in actions but for a long time won’t be able to tell if these actions will make the desired impact.
One can invest months in reaching a target, but the result could be an over achievement or failing
the goal completely if it cannot be measured and reiterated based on the results.

Defining a metric means setting these five properties:

• what to measure (the goal)
• how to measure it (i.e. meter or money)
• what is the current situaton (the benchmark)
• what is the minimum acceptabe value (the break-even point for investment, the constraint)
• what is the desired value (the target)

Step 2: Actors

The next step was to find the actors. With all the different people in the room we had all the different
perspectives in one place and thus we came to a very long list, with a few surprises on it. My learning
from this step was that even if you won’t analyze all of them it is very important to create this list
to see how many people, roles can impact your goals. It can be a real eye-opener.

Having this list on the wall it was really easy to categorize them in primary, secondary ad off stage
actors. Now we had the full context to be able to define the impact, the actions we can take to achieve
the current goal.

Field Stories for a tool 185

Next Steps: Impact and Deliverables

The hardest part was done. As next step the three teams will have to go on separate ways and
start to work out the possible impacts to achieve their goal, choose the best possible one and define
the deliverables, the necessary actions. After starting to deliver the results must be measured and
compared with the metrics we defined. After a target is reached or in case of making the situation
worse (the value sinking below the benchmark) the action should be reevaluated and eventually
stopped. As Gojko²⁰⁸ writes

Rinse and repeat

Final thougths

• read the book: it is short, very visual and self-explaining. Follow the path and take care not to
make the errors listed in the book.

• make sure that everybody is on board. The goal-finding part was the hardest and the longest,
but it was essential. Without this starting point the result will be exactly so valuable like
building a great feature which fulfilles a lot of things, but none of them were needed by the
customers. Deliver business goals nut just features

• say no to goals which are not measurable. Explain the constraints every goal must obay and
explain, why.

• do not even start with impact mapping if the company isn’t prepared to inspect and adapt.

If a product milestone or project succeeds in delivering the expected business goal, it is a
success from a business perspective, even if the delivered scope ends up being different
from what was originally envisaged. On the other hand, if it delivers exactly the requested
scope but misses the business goal, it is a failure (Gojko Adzic)

²⁰⁸https://twitter.com/gojkoadzic

https://twitter.com/gojkoadzic
https://twitter.com/gojkoadzic

Field Stories for a tool 186

Improving your Organizational Continuous Delivery
capabilities with EventStorming

Continuous Delivery is not just a Team Effort - Four steps to improve your skills
together

Written by Pim Smeets & Kenny Baas-Schwegler

Many projects we are involved in focus on helping a team shorten their Time To Market (TTM)
by building or developing Continuous Delivery capabilities. While improving specific technological
capabilities on team level is never a bad thing, the most significant bottlenecks are usually not
confined to the skills of this small group of people. Therefore, we need to walk a different path; we
need to improve organizational Continuous Delivery capabilities.

To significantly shorten TTM, we need to take a holistic approach and focus on the entire system
and identify the Theory of Constraint¹. In this article, we share how we help companies
move from discontinuous to Continuous Delivery in a short timeframe.

“If we have a system of improvement, that’s directed at improving the parts taken
separately.
You can be absolutely sure that the performance of a whole will not be improved.”

-Russel L. Ackoff

What is continuous delivery?

Continuous Delivery is a software development discipline or approach that is primarily an orga-
nizational capability; it goes beyond the automation of tests, infrastructure, and deployments. It
makes sure that your software is in a releasable state at any time. In essence, the goal of Continuous
Delivery is to transform an idea or user request into a working solution within a timeframe that is
acceptable for its users, where the solution can be anything from a new version of the software, an
updated customer service process, or a hardware iteration. If an organization is unable to release
product increments sufficiently, reliably, or quickly they are in what Steve Smith calls “a state of
Discontinuous Delivery.”² Once this happens, the risk of losing customers will increase,
because not providing them with what they need or want results in them looking for alternative
solutions.

How do we adopt continuous delivery?

Continuous Delivery is a set of team and organizational capabilities, all aimed at accelerating
the software delivery process. It is not easy to adopt these: e.g., database migration, trunk-based
development, small batch sizes, continuous change reviews. Also, they might not always help in your

Field Stories for a tool 187

specific context. To know what will be useful, we experiment with new capabilities and measure
their effectiveness with the improvement kata.³

To successfully kick-start the adoption of Continuous Delivery, we use a workshop based on
an adapted version of EventStorming. This helps us map the software delivery process, identify
constraints, and provides enough actionable insights to start improving straight away.

Using EventStorming as a baseline for your Continuous Delivery
improvement

The workshop is based on two workshop formats from the EventStorming community, Big Picture
and Team Flow EventStorming. The process itself is quite straightforward and consists of four steps:

I. Use EventStorming to visualize your software delivery process
II. Visualize queues, constraints and improvement points
II. Analyze the results and enrich the data
IV. Decide as a group what actions to take

I Visualizing your software delivery process

Accelerating TTM starts with taking a holistic view of the software delivery value stream we
are trying to speed up. We visualize all domain events (events relevant to your business domain)
that occur in the process of turning an idea into working software, like: ‘user feedback received’,
‘refinement done’, ‘code checked in’ or ‘artefact deployed to production’.

Chaotic exploration

After the campfire chat, it’s time for the messy part! During what we refer to as “chaotic exploration,”
we ask the people in the room to write down all domain events relevant for their software delivery
flow on post-its. Then, we ask them to place the events in the order they think they happen without
being influenced by others. Doing this makes the participants’ mental model of the process visible
(on the paper roll) and brings it into a shared pool of understanding.

Field Stories for a tool 188

Results of Chaotic exploration

Enforcing the timeline

When all events are on the paper, it is time to make sense of the chaos. We refer to this step as
“enforcing the timeline” because we challenge participants to create a single consistent timeline of
their software delivery and remove duplicate stickies. This then leaves us with a clear picture of the
flow structure. You will notice that the room will become noisy during this phase as participants
have to align with each other. After that, we add post-it labelers to identify the different stages of
software delivery and structure the paper roll even more.

Typically the process that is visualised starts with an idea coming from internal stakeholders or
client feedback. This idea is then conceptualized, a business case is created, and the budget is
approved. The next steps include creating a UX design, involving relevant (engineering) teams,
backlog prioritization, refinements, writing code, testing changes, and the regular release process.
A typical ending point would be the deployment of a new feature to production and receiving end-
user feedback.

Two things to keep in mind!

• What this process looks like varies per organization, and having some kind of fast track in place
for unique and urgent requests is not unusual. We advise you to visualize your situation as-is,
to provide space to map multiple alternative flows, and to remember that models are always a
trade-off between abstracting reality and accuracy.

Field Stories for a tool 189

• Visualizing is a collaborative act between all stakeholders. To get the most out of it, be sure to
invite the right people and significantly reduce the number of assumptions made.

Results of Enforcing the timeline

II Add constraints and opportunities

The next step is to add queues, constraints, and improvements to your visualization.

• Constraints come from limited resources, like: time, budget, and materials.

* Queues (waiting times between steps or processes) are intentional or caused by constraints. For
example, product increment planning takes place every month, effectively pausing progress for up
to thirty days.

• Opportunities are a particular type of sticky, indicating there is potential to enhance a step (or
the entire process). When visualizing opportunities, you do not have to come up with a solution
yet. It just serves to indicate there is work to be done and efficiency to be gained. For example,
reducing the number of handovers can lessen queues and misunderstandings.

Field Stories for a tool 190

Results of constraints and opportunities

Summarize and enrich the data

After the EventStorming session, it’s time to crunch and plot the data. During the workshop, you
will have gathered a list of processes, plus the time it takes to get from one process to the next, which
can vary per situation. Don’t worry, just plot a minimum, maximum, and average queue time. The
goal is not to be 100% accurate but to create an overview that helps kick-off an informed discussion.

Now is also the time to enrich the data you gathered. If you are using an issue tracking tool like Jira
or an automated Build and Deployment tool like Jenkins, Gitlab, or Azure DevOps, you most likely
have a ton of metrics readily available. If you aren’t using these tools yet or collecting data from
them, investigate and set them up!

It’s more difficult to gather detailed data when an item is still just an idea in someone’s head or the
output of a brainstorm session (in the discovery phase). Again, no need for stress, the goal is not to
get data that is 100% accurate but to collect insights to spark a fact-based discussion.

Your visualised output can look something like the chart below. What immediately stands out here
is that most time constraints are not in the activities that are controlled by the development team.

Field Stories for a tool 191

Value stream

Creating ownership and sustainable change

At this point, you have a holistic view of the process. You know what every step entails, and you
have identified constraints as well as improvements. Now it’s time to look at the future, place that
elusive dot on the horizon, and start working towards it! Once again, it’s a group process that needs
the right operational, tactical, and strategical stakeholders included. Involve those who are going to
be implementing changes for them to become explicit owners of the improvements they proposed.

In a workshop day, form small focus groups responsible for a part of the process. Ideally, a group
contains a subject matter expert, someone with a mandate to make decisions and a stakeholder from
related processes. For example, you will set-up groups for ideation, planning, software development,
and organization. The software development group ideally consists of one or more developers, a
business owner, and a manager.

• The business owner will play a role in smoothing out the handover between the business
and the development team(s), by asking questions like ‘What are we making?’ And, after an
iteration, ‘Did we do the right thing?’

• The developers will contribute to turning a need into a solution that fits the (technical) context,
and help release it safely and predictably.

Field Stories for a tool 192

• The stakeholders can help align team scope and software architecture, as well as resolve
capacity issues or other organizational limitations that prevent teams from excelling.

Tip: Use a liberating structure⁴ like “What I Need From You,” “1-2-4-all” or “Troika
Consulting” to discover and formulate your dot on the horizon. After getting to the ideal situation
that is still attainable within your context, start creating action points. What little thing can you do
today to work towards this goal? What topics do you need to investigate further? On what points do
you need structural change, and what do you need to achieve your goal? Can you make a decision
today? If not, which stakeholders do you need to ensure decisions are made?

Bring the entire focus group back together every 1-2 hours and have every one of them present their
progress to receive rapid feedback and ensure alignment. End the day by bringing all ideas, goals,
and action points of the different groups together.

Example from the trenches

Following this technique leads to exciting and actionable insights. For example, we recently used
this technique to map the software delivery flow of a non-profit organization together with their
marketeers, business delegates, product owners, software developers, and testers.

The hypothesis was that reducing the time spent on user acceptance testing (14 days) would
significantly shorten the organization’s TTM. During the process, we discovered that the real
bottleneck was the time it was taking for an idea to make it onto their backlog, namely: a staggering
three to eighteen months!

Regardless, there were still excellent reasons to invest in the technological capabilities of Continuous
Delivery. For instance, by automating tests and deployment, we removed repeated manual and error-
prone parts of the process. Nevertheless, in this case, solely strengthening technological abilities was
not enough to reduce TTM as desired, because there were significant queues and constraints in the
entire flow that needed fixing to realize this. Which brings us back to where we started: to improve
performance, you need to look at the process as a whole, and our approach to (the adoption of)
Continuous Delivery helps you do precisely that!

About the Authors

Pim Smeets

Pim Smeets is a consultant at Xebia giving strategic advice on software development. For Pim
understanding the context of an organization (‘why do we do what we do?’) is key to making lasting
changes: there is no one size fits all.

Creating high-performance teams does not stop at using techniques such as Continuous Delivery,
TDD or BDD. It means producing high-quality software, in close collaboration with its stakeholders;
adding real business value in small increments that can be automatically and securely released.

He believes in autonomously aligned teams by bringing together business and IT using collaborative
visualization techniques, such as Example Mapping or EventStorming.

Field Stories for a tool 193

Kenny Baas-Schwegler

Kenny Baas-Schwegler is a strategic software delivery consultant, Socio-technical thinker, facilitator,
collaborate modeller, technical lead that builds quality into software delivery at Xebia. He mentors,
coaches and consults management and teams by using practices, techniques and tools from
domain-driven design, anthropology, deep democracy, behaviour-driven development, DevOps, and
Continuous Delivery.

By using and combining tools such as EventStorming, Example Mapping, Impact Mapping, and
User Story mapping, he helps to bridge the communication gap between business and IT. With
these approaches, he aims to create a transparent, safe, and collaborative space with constant and
instant feedback for delivering quality software.

Sources

1. See https://www.leanproduction.com/theory-of-constraints.html²⁰⁹
2. See https://www.continuousdeliveryconsulting.com/blog/discontinuous-delivery/²¹⁰
3. See https://leanpub.com/measuringcontinuousdelivery²¹¹
4. See http://www.liberatingstructures.com/²¹²

²⁰⁹https://www.leanproduction.com/theory-of-constraints.html
²¹⁰https://www.continuousdeliveryconsulting.com/blog/discontinuous-delivery/
²¹¹https://leanpub.com/measuringcontinuousdelivery
²¹²http://www.liberatingstructures.com/

https://www.leanproduction.com/theory-of-constraints.html
https://www.continuousdeliveryconsulting.com/blog/discontinuous-delivery/
https://leanpub.com/measuringcontinuousdelivery
http://www.liberatingstructures.com/
https://www.leanproduction.com/theory-of-constraints.html
https://www.continuousdeliveryconsulting.com/blog/discontinuous-delivery/
https://leanpub.com/measuringcontinuousdelivery
http://www.liberatingstructures.com/

Field Stories for a tool 194

Gathering quality feedback at #play14 with
EventStorming

Written by Cédric Pontet

What is #play14?

#play14²¹³ is a worldwide gathering of like-minded people who believe that playing is the best way
to learn, share and be creative!

Tell me and I forget, teach me and I may remember, involve me and I learn

Benjamin Franklin

For two and a half days, people with many different profiles and experiences²¹⁴ are invited to
share serious games & fun activities²¹⁵, experiences & tips, knowledge & insights, laughs & smiles.
Everyone is welcome to join.

A proposed activity could be a lot of things:

• A serious game that you use as a metaphor to understand a new concept
• An ice breaker game where people learn more about one another
• A warm-up or an energizer that you can use to raise the level of awareness and energy
• A facilitation technique that you can use in your daily work
• A team-building exercise that fosters collaboration and self-organization
• A game design session where you invent a new game to teach something new
• A soul searching, deep-dive introspection session where you learn about yourself
• A one-on-one coaching session where you will find some answers with the help of a friend
• A brainstorming session on a question or problem that wakes you up at night
• A creative session where you sketch, doodle, or build something together
• A fun and energetic time with dancing, singing or being silly together
• An improv theater session where you can work on your confidence and ability to speak publicly
• A more esoteric session on a practice/hobby you want to share like yoga, laughter yoga, Tai

Chi, Qigong, meditation, mindfulness, aikido, …

It could be pretty much anything as long as it respects our Manifesto and Code of Conduct²¹⁶.

#play14 is a place to develop your facilitation skills, increase your ability to accompany change in
your organization, foster your creativity and improve your capacity to innovate.

²¹³http://play14.org/
²¹⁴https://play14.org/players
²¹⁵https://play14.org/games
²¹⁶https://play14.org/values

http://play14.org/
https://play14.org/players
https://play14.org/games
https://play14.org/values
http://play14.org/
https://play14.org/players
https://play14.org/games
https://play14.org/values

Field Stories for a tool 195

You can discover more about a person in an hour of play than a year of conversation

Plato

#play14 is an unconference, where all attendees are also contributors. All you need to do is show up,
and you will be given the opportunity to propose some games or play the games proposed by the
others.

However, #play14 is first and foremost a community of people, a family, and an incredible human
adventure. And I am proud to be one of its founders.

The perpetual quest for improvement

#play14 is now hosted in different cities all around the world, each event being organized by a
different local team.

One of the main characteristics of any of the organizing teams at #play14, independently from the
place or culture, is the sense of continuous improvement, and therefore a need to gather quality
feedback from the participants.

Improving something that works already pretty well is not easy. And to be clear, gathering feedback
at #play14 has always been a challenge. Sure people are ready to share their happy feelings after
two and a half days of intensive play with other people. And it’s always a pleasure to receive some
of the participants’ compliments on the organization. It’s actually quite emotional sometimes. But
when you really want to improve, you need feedback to act on. Something that you really can do
better. Or a new idea that you can work on for the next event.

For years, we have put on feedback walls, with any shape and form we could imagine:

• The simple plus and minus board
• The starfish²¹⁷
• The Mad Glad Sad²¹⁸

And probably many others that I have forgotten.

Ther common denominator between all of these techniques were always

• Poor quantity: people were not very engaged to provide feedback
• Poor quality: the feedback provided was superficial and most of the time useless or not

actionable
• Poor collaboration: people were providing individual feedback but they were not sharing ideas

We wanted better quality feedback, but we didn’t know how to get it.

²¹⁷http://www.funretrospectives.com/starfish
²¹⁸https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/

http://www.funretrospectives.com/starfish
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/
http://www.funretrospectives.com/starfish
https://www.teamretro.com/retrospectives/mad-sad-glad-retrospective/

Field Stories for a tool 196

Enters EventStorming

I discovered EventStorming for the first time when I met Alberto Brandolini at Build Stuff in
Lithuania in November 2013. I can’t remember the details of the talk he did, but I remember that
it made my day. Everything he said was right on the spot and resonated with me so much, that
I had to talk to him afterward. Later that day, during the infamous Build Stuff conference party,
I suggested that Alberto could join the first #play14 event that we were planning in Luxembourg,
which he eventually did. In March 2014, we hosted our first #play14 event, during which Alberto
presented a session on ModelStorming, the meta format of EventStorming.

Since then, I have talked about EventStorming at #play14 sporadically. But it was when I saw
Alberto’s talk 50 000 orange stickies later²¹⁹ at KDDDConf (still named KanDDDinsky at that time)
in 2017 that I realized I should spend more time advertizing for EventStorming within the #play14
community. And it was during the first EventStorming Summit in Bologna in 2018, where Alberto
kindly invited me, that I decided to actively do it. My contribution to the EventStorming community
in some way. Therefore, I proposed sessions about EventStorming during the #play14 events that
followed, London 2018 and Amsterdam 2018, to showcase what the tool was about and how it could
be useful. The subject matter that I chose for that was actually How to organize a #play14 event?.
Funny, right?

But it hadn’t come to my mind to use EventStorming as a feedback tool yet… not until Luxembourg
2019. At the end of the summit in Bologna, we had used EventStorming to gather feedback and try
to figure out the next steps for the EventStorming community. It worked pretty well. So, instead
of trying to run an EventStorming session in just 50 minutes as I did in London and Amsterdam,
which was somehow challenging due to the time constraint and did not really deliver as great an
outcome as I could expect, I decided instead to try EventStorming for the retrospective of the day
in Luxembourg. And it was both a success and a bit of a surprise. In just about 20/30 minutes, we
managed to gather great feedback and I could explain the core mechanisms of EventStorming.

It worked so well that I repeated it at the next Agile meetup in Luxembourg, and then at #play14
Madrid 2019 and #play14 Kuala Lumpur 2019. Even my colleagues Cédric Tamavond and Yoan
Thirion decided to organize a quick feedback gathering at the end of their session on Xtrem
Reading²²⁰ at NewCrafts Paris 2019 using EventStorming.

What makes the difference?

By using events as the base of your timeline, you make things very factual. Events don’t leave a
lot of room for interpretation. And building this timeline as a group helps people remember more
precisely what happened during the day.

So, after a few minutes, when you ask people to use pink sticky notes to write down WTF moments,
it comes quite naturally. Having WTF moments at #play14 is what we are looking for. It’s important
for us as a community to disrupt people’s mind, to break some habits, and to help participants get

²¹⁹https://youtu.be/cG-G6tNCGqY
²²⁰https://www.xtrem-reading.com

https://youtu.be/cG-G6tNCGqY
https://www.xtrem-reading.com/
https://www.xtrem-reading.com/
https://youtu.be/cG-G6tNCGqY
https://www.xtrem-reading.com/

Field Stories for a tool 197

out of their comfort zone. Gathering that type of information on a normal feedback wall would be
difficult because people would probably be reluctant to share. But with EventStorming, it comes
within the flow. And everyone is doing it, so why not you.

When you then tell people to use green sticky notes to write down their takeaways, it helps them
reflect on what they learned. It’s a nice way for them to anchor and reinforce their learning. Games
and playful activities are very powerful learning tools. Mainly because they allow the participant
to live and feel things themselves, instead of getting explanations of what they should understand
from an external party. The format of EventStorming flows so naturally and is such a powerful
collaborative exercise that it fits right in.

Visualizing the timeline helps a lot. Therefore, when you add the last element of the incremental
notation, the yellow sticky notes with improvements, it is easier for people to find meaningful
things to write down, especially after they have already reflected on their WTF moments and main
takeaways.

Obviously, as an organizer, you tend to focus on the yellow stickies. You strive to get better at what
you do. And it is important to know what you can improve, but it is equally important to realize
that you actually delivered value to the participants. EventStorming is great for that. In a blink of an
eye, you see a whole day of experiences and learning. You can dive in and look at the details of one
moment in the day. You can pay attention to what happened during lunch, or coffee breaks, which
are your responsibility as an organizer, but you also discover some things that happened when you
were not there. Things you did not see. It’s like a colorful time machine.

I mentioned earlier that the main issues we had with the feedback tools we previously used at
#play14 were poor quantity, poor quality, and poor collaboration. With EventStorming, that changed
completely. The quantity of feedback you get in 30 minutes is amazing. The quality is indeed much
better. As I just explained, visualizing a timeline of events helps people focus on what is important
and reflect on their emotions, what they lived, what they felt. Collaboration is so intense, that it
becomes a sort of emotional communion with all the other people that are present. It might seem
a little exaggerated to say that. But believe me when I say that sometimes at #play14, a full day of
playing together can be so physically intense, intellectually exhausting, and emotionally challenging,
that when you close the day with an exercise like that, a kind of magic just happens.

Field Stories for a tool 198

Building an Event Driven Data Capture Platform

Written by Gayathri Thiyagarajan

Introduction

As a Data Engineering Leader for an e-commerce platform, my team is responsible for capturing
customer interactions across a variety of brands during their shopping journey. The product that we
have built serves as a bridge between the online and data world, collecting customer journey details
around Search > Shop > Checkout > Buy – along with additional journeys such as Deals, Sign-in,
User Account, Loyalty Points, and so on.

Typical consumers of this data are:

• Data Scientists deploying it for various machine learning use cases - most commonly for real
time personalisation such as personalised search results, product image selection, advertise-
ments;

• Analysts for calculating efficient marketing strategies, customer insights to understand and
improve customer experience to name a few.

The Data Capture Platform Vision

Our goal is to build a platform that captures customer’s interactions as a stream of data which
represents what a customer experiences as they journey through our online e-commerce platform.

The information thus captured is a principal data source that provides significant insight into
customer behaviour, powers business decisions, drives real-time personalisation, and informs
multivariate testing and is also vital for monitoring key business and operational metrics.

Put another way, this data provides the eyes and ears for the business; helps us understand how
a customer interacts with various products, features and offerings. Consequently this opens up
opportunities to improve customer experience with more personalised features, marketing channels
optimisation, analysis of performance of various products and much more!

From our engineering perspective, such a data platform must be built to handle billions of customer
interaction events per day, must scale with increased customer activity, and make the data available
to be consumed by various data-consuming pipelines.

The Conventional Approach

The traditional approach to capture such data in the past both in-house and through third-party
libraries has been pretty Data Driven. This usually involved a single “catch-all” canonical schema
with generically named attributes and unbounded types that cast a wide-as-possible net and
captured any and all types of data. While it worked for a while, as the business expanded this
approach soon ran into significant scalability and quality issues.

Field Stories for a tool 199

Quality?

As data was captured, there was very little validation that could be performed against the schema -
which was our first line of defense and also a simple solution that can work at scale. This limitation
led to requiring retrospective data quality checks downstream to ensure the quality of data. This of
course quickly got out of sync as new data was captured.

Scalability?

With the data driven model and a canonical schema made of generic attributes, scalability was
“achieved” by overloading existing attributes through delimited or compound values. This allowed
the existing schema to carry more information but resulted in the need for bespoke downstream
processes to unravel these fields.

But what about adoption?

Most significantly, by the time it reached its eager consumers, the data thus captured, streamed and
landed in database tables, had lost all of the context or setting that it was captured in. This is not
so much of a problem for simple aggregations and roll-ups - if one wants to understand how many
customers searched for a particular product - but how does one know if the customer paginated
three times before they found the one they were looking for? It was this depth of information, living
fully in the context of the event, where the largest value lay.

Meanwhile what we had, with our overloaded attributes with their delimited and selectively /
conditionally set values, was only comprehensible to a limited group of people.

With increasing success and the resulting scale we had arrived at every Data Consumer’s nightmare
- too much interpretation of data, unreliable data quality, an unwieldy monolithic schema and
deciphering overloaded attributes at every stage of the pipeline. Another solution was needed.

Producer problems too?

It wasn’t only problematic at the consumer end. For the producers too, the monolithic schema was
leading to them dealing with large serialised objects, the majority of the payload wasn’t relevant
to their domain. At worst, our overloaded attributes had led to domain logic pertaining to the Data
Capture domain being embedded in their business code.

Our Event Driven Approach

From the beginning, some of the domain language was blindingly obvious: we were referring to
capturing what the customer did and saw. We wanted to capture both customer’s interaction and
the context in which the interaction happened, in order to build a broader and deeper picture of the
customer’s intentions and behaviour.

Field Stories for a tool 200

There were further clues from the domain experts themselves (aka the Analysts) who talked about
“events” when discussing this particular dataset. They were referring to this as customer interaction
events such as Search Submitted by the customer or Date Selected by the customer or Product Prices
Seen by the customer, even though the data representation was not strictly that of an event.

This led us to choose, from very early on, an event-driven approach as the natural choice for our
Data Capture platform.

The Events

One of the fundamental principles that underlined our platform was to capture customer’s interac-
tions as atomic, immutable events.

Atomic, because the events thus captured were eventually used to build a customer behaviour “state”
- it would have been challenging to subsequently rebuild this state if the data which should typically
make up a single event i.e the action and context was broken down into multiple pieces and captured
independently. One can consider it analogous to the challenges of distributed systems with various
pieces of information arriving (or not) at different times, and in an unreliable manner.

Furthermore, our having atomic events ensured that data producers needed to know and produce
only their domain-specific data and not concern themselves with a monolithic schema containing
other data objects irrelevant to their domain.

And immutability? By being Immutable, we could easily guarantee data integrity for our down-
stream consumers.

The Event Model

The first thing we did when we set out building an event driven capture platform was to run an
Event Storming workshop with our domain experts.

Now, let’s take a typical customer journey and Event-Storm it. It starts with a customer landing on
the homepage of our site to search for products;

The sequence of events are shown here for a normal customer who reaches our site directly:

Field Stories for a tool 201

Event Storming Customer Journey

It is quickly evident from even this simple view that there was an event model evolving out of this
event storming process around two main event categories namely Client-Side events and Server-Side
events.

Client-Side Events

The client-side events are the typical customer actions (“did”) and views (“saw”) which I mentioned
above. This category of events contains the action and the precise contextual data that accompanied
the action. For example, when the customer opens the calendar (action), what was the date that was
selected (contextual data).

A further two sub-categories of events emerged on the client side depending on the characteristics
of what was being captured in each event.

First of these are the Interactions (Pink Squares) - this is when a customer actively engages with
widgets and features of the e-commerce platform - such as when they click on a button or tap a
photo or scroll through the screen/page or select a link.

The second subcategory are the Impressions (Purple Squares), these are passive interactions but
nonetheless valuable - they answer a very important question ‘how much of the content served to
the customer was “seen” by them or in some cases did they stay on our platform long enough to
complete the purchase?’

Field Stories for a tool 202

Event Model for Client-Side Events

Server-Side Events

More often than not, it’s not just the customer that interacts with our e-commerce platform. On
many occasions our platform responds and interacts back with our customer as well. From the event
storming exercise above, another common theme was revealed - these were the Serve events (Blue
Squares). They represent the second important category of event data that we wanted to collect.

At this point it is worth highlighting to you the several business domains in our platform - Search,
Shopping, Product, Checkout, Payment to name just the key ones. Each of these domains serve very
specific and relevant information depending on what the customer asks for. If a customer searches
for a product then the Search domain offers the top 10 most relevant results; subsequently when
the customer selects the third result from the list, then the Product domain provides details about
that product. In some cases, there may not even be any results returned for a search term - this is an
important signal for the business as well - Was that a correct behaviour of the platform or something
wrong in the underlying business services that returns zero results for certain keywords?

Field Stories for a tool 203

Event Model for Server-Side Events

In addition to this, we are also interested to know how fast our platform is performing or “serving”
content to our customer?, or how far does a customer progress in their shopping journey before they
tend to drop off?, or what content exposed early on in their journey has inspired the customer to
make the purchase?

Critically, these “Serve” events carry important context that can’t be captured on client side for
various reasons:

1. Performance - the Search Results Served event for example, carries at least the top 10 results
shown to the customer - this also contains information about the product, additional details on
the product, image to be shown etc. Such a payload captured as an event from the client side
could potentially impact the page performance as each of these calls will hog the HTTP threads
better dedicated to serving content even if they are designed to be asynchronous. Especially if
you take into account the additional search results served each time the customer scrolls down
and so on. These are significant amounts of data to capture on the client side when they can
be much more efficiently captured on the server side

2. Reliability - Client-side data capture will always be more unreliable compared to server side
data capture as it depends on various factors, for example, customers staying long enough for
the events to be fired and additional network hops from outside the platform.

3. Coverage - Server-side data capture has the ability to surface additional operational and
system information that client side data capture could never be party to

Eventing at Scale

Given the platform nature of the solution we are aiming for, it is important to ensure the process of
event/schema creation was as democratized as possible.

Field Stories for a tool 204

This inadvertently came with the risk of data producers creating a flurry of events which, while
unique within their own domain, resulted in several “similar” events at the organisational level
(even while they conformed to the above global event model). This would have yet again inevitably
led to data consumer issues of having to reconcile different flavours of these “similar” events for
example Product Selected events on the Search Results page to Suggested Product Selected events on
the Home Page.

It is clear now that we need to solve eventing at scale, at an organisation level while empowering
the domains to remain independent while allowing them to evolve within an event framework.

Conclusion: Event Storming as the Driving Force

As I’ve touched upon many times in the above sections, our mission is to build a platform for
capturing events within their highly valuable context.

In order to achieve this while solving for scale at organisation level and also support the data
governance perspective, we are looking to introduce Event Storming as a prerequisite to on-board
producers and consumers of new datasets onto our Data Capture Platform.

Following the successful introduction of Event Storming in the design of the Data Capture Platform,
we are confident that this will bring about Event First attitude for data across the organisation.

Field Stories for a tool 205

Understanding Requirements With Domain
Storytelling

Written by Stefan Hofer

The Requirements Specification

If a public institution in the European Union needs software, it can’t simply hire any company. It is
obliged by law to call for tenders. That means the institution must write a requirements document.
Companies can then submit a tender for the contract. Finally, one of the contenders is selected based
on price, qualifications, and the proposed solution.

Some time ago, our company won such a tender. The requirements specification document amounted
to 300 pages, describing (among many other things) 80 use cases. Personally, I am not a big fan of
these kinds of documents. Since I have written one or two myself, I know that no matter how much
skill and time go into them, they are always outdated, incomplete, and—to put it simply—wrong.
Nevertheless, those 80 use cases were among the best I had ever read: They contained a main success
scenario, variation scenarios, preconditions, primary actors, goals, triggers, and a lot of other useful
information.

Our customer’s business analyst had done a great job, but as soon as we started working on the
software, my colleagues and I realized that the use cases were not sufficient to really understand the
domain. We did not know enough about the business processes and the context of the requirements.

Meeting the Domain Experts to Understand the Problem

At the kick-off workshop, I decided to pull Domain Storytelling out of my toolbox. I did this because
the business process that we wanted to analyze was highly cooperative, involving multiple actors
and systems. The customer’s team included the business analyst and about five domain experts
who would later use our software. Together with two of my colleagues, I modeled three happy-path
scenarios as medium-grained, as-is domain stories. We were able to gain a better understanding of
the domain. In particular, we understood the shortcomings of the existing solution, which motivated
several of the requirements.

Adding Context to the Requirements

When we all met again about a month later, we were interested in the solution space. In a second
round of Domain Storytelling, we used the same three happy-path scenarios as we did the first
time, except that now we had the domain experts tell us about the to-be processes. Now, we got to
understand the interplay of the use cases.

Field Stories for a tool 206

Release Planning

Another three months and several implemented use cases later, we had reached a point where we had
to think about going live with the first release. Our customer had planned an incremental rollout—
some users would switch to our new software, and others would continue to use the old software. To
make that possible, we had to enable collaboration between the two software systems. We needed to
design a collaborative, software-supported workflow, and again we chose Domain Storytelling for
that purpose. This time, the scope was fine-grained and to-be. During the workshop, we realized that
the newly designed, software-supported workflow was not backed by the requirements document.
However, it was easy to derive new requirements from the domain story. Basically, we just had to
transcribe the activities into text form. Besides domain stories, we also used mock-ups and walk-
throughs of implemented functionality.

By the way, our team grew by approximately one developer per month. Retelling the domain stories
helped the new team members understand the domain. So, it became part of the team’s onboarding
process. But that’s another story.

Combining tools
Domain Storytelling and EventStorming

Both EventStorming and Domain Storytelling can be applied at different levels of detail and to as-is
and to-be processes. Hence, there are a lot of possible combinations. We have tried some of them
successfully:

From EventStorming to Domain Storytelling

In big-picture EventStorming, you might come across parts of the process that are cooperative, i.e.,
several people or systems are actively involved. If these parts are critical to your analysis of a domain,
you might want to go the extra mile to get another perspective on the process: You can model the
cooperative part of the process additionally as a domain story.

From Domain Storytelling to EventStorming

On design level, EventStorming’s notational elements fit very well to the implementation styles
Command-Query Responsibility Segregation (CQRS) and Event Sourcing. If you are familiar with
this flavor of EventStorming, you can use it as a follow-up to coarse-grained domain stories.

Authors, attribution and citations

• Stefan Hofer(@hofstef²²¹) - Contributed to the article
• Henning Schwentner(@hschwentner²²²) - Contributed to the article

EventStorming and Example Mapping

What is made possible

Everything that happens happens as it should, and if you observe carefully, you will find
this to be so.

— Marcus Aurelius
²²¹https://twitter.com/hofstef
²²²https://twitter.com/hschwentner

https://twitter.com/hofstef
https://twitter.com/hschwentner
https://twitter.com/hofstef
https://twitter.com/hschwentner

Combining tools 208

Everyone is subject to cognitive bias, especially when we get information overload. We notice things
already primed in memory or repeated often; this is called the context effect and attentional bias.
We are also drawn to details that confirm our own existing beliefs; this is called the observer effect
and the confirmation bias. Especially the bias blind spot, noticing flaws in others is more easily
than yourself is dangerous during our exploration of the domain. To battle these biasses we need
to use different viewpoints, other tools. By doing EventStorming and using techniques from BDD
such as Example Mapping, we can create more insights. We can simultaneously create a model
and executable specifications for our user needs. This way, we can write software and tests which
matches the shared understanding of the user, creating a ubiquitous language. Value will be shipped
at a faster pace.

How to use it

Find a room with a wall of minimal 5 meters width to stick a paper roll on. Use a flipchart as a
legend to update during the workshop. Have a table close by to do Example Mapping on.
Have enough stickies, index cards and markers for the whole team to use. You can check the tools
EventStorming for Software Design and Example Mapping for more information

The workshop

1. Do a EventStorming Software Design like described in the tool, and stop after step 5 were the
story line is finished and the colour coding is enforced.

2. Create blue index cards from all the Yellow and Purple business rules. These will be used as a
started for Example Mapping

3. Place the blue index cards horizontal, and start Example Mapping.

Combining tools 209

EventStorming to Example Mapping

4. While you are doing Example Mapping, use the language that you used from EventStorming.
For instance: Given these Domain Events happend, when we do Command X, then Domain
Event happens.

5. Once you finished both excersice you can keep both of them up to date by new insights, going
back and forth between the two tools.

6. Now you can slice what to start with by grouping the priority of the rules on the Example Map.
From there start proposing your software model and formalise the examples to acceptance
criteria.

Why?

• To find new insights and battle your blind spot bias.
• To include software design and testing in the same session.
• Create a ubiqituous language between code and test code.
• Create a software model combined with acceptance criteria as examples.

Heuristics

• Switch to Example Mapping when discussing examples of business rules²²³
• Use consistent language between visual collaboration tools²²⁴

²²³https://www.dddheuristics.com/guiding-heuristics/eventstorming-switch-to-example-mapping-when-discussing-examples-of-a-rule/
²²⁴https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-consistent-language-between-visual-collaboration-tools/

https://www.dddheuristics.com/guiding-heuristics/eventstorming-switch-to-example-mapping-when-discussing-examples-of-a-rule/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-consistent-language-between-visual-collaboration-tools/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-switch-to-example-mapping-when-discussing-examples-of-a-rule/
https://www.dddheuristics.com/guiding-heuristics/eventstorming-use-consistent-language-between-visual-collaboration-tools/

Combining tools 210

Authors, attribution and citations

• Alberto Brandolini(@ziobrando²²⁵)
– Book: Introducing EventStorming²²⁶
– Website: EventStorming²²⁷

• Example Mapping By Matt Wynne(mattwynne²²⁸) & (tooky²²⁹), credits blog post:
– Example Mapping Introduction²³⁰
– Your fist Example Mapping session²³¹

• Kenny Baas-Schwegler(@kenny_baas²³²) - Contributed to the article
• Thomas Pierrain(@tpierrain²³³) - Contributed to the article
• Bruno Boucard(@brunoboucard²³⁴) - Contributed to the article
• Book DDD First 15 years²³⁵

– Discovering Bounded Contexts with EventStorming — Alberto Brandolini
– Model Exploration Whirlpool – Kenny Baas-Schwegler

• DDD-Crew Github EventStorming Glossary & Cheat sheet²³⁶
• VirtualDDD Domain-Driven Design Heuristics

– EventStorming²³⁷
– Example Mapping²³⁸

Wall of Technical Debt and Mikado Method

How to use it

The Wall of Technical Debt combined with Mikado Method it’s a powerful source of insights for
software engineering teams.

When a team has a technical debt item, a great way to discover the complexity involved in the
change is to use the Mikado Method per tech debt item. From it, a Mikado graph per tech debt item
can be created, allowing the team to prioritise what needs to be repaid. Also, when the team is using
the Mikado Method per tech debt item, it can discover if tech debt items are linked or not.

²²⁵https://twitter.com/ziobrando
²²⁶https://leanpub.com/introducing_eventstorming
²²⁷https://eventstorming.com/
²²⁸https://twitter.com/mattwynne
²²⁹https://twitter.com/tooky
²³⁰https://cucumber.io/blog/bdd/example-mapping-introduction/
²³¹https://cucumber.io/blog/bdd/your-first-example-mapping-session/
²³²https://twitter.com/kenny_baas
²³³https://twitter.com/tpierrain
²³⁴https://twitter.com/brunoboucard
²³⁵https://leanpub.com/ddd_first_15_years
²³⁶https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
²³⁷(https://www.dddheuristics.com/eventstorming/)
²³⁸(https://www.dddheuristics.com/example-mapping/)

https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/mattwynne
https://twitter.com/tooky
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/your-first-example-mapping-session/
https://twitter.com/kenny_baas
https://twitter.com/tpierrain
https://twitter.com/brunoboucard
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
(https://www.dddheuristics.com/eventstorming/)
(https://www.dddheuristics.com/example-mapping/)
https://twitter.com/ziobrando
https://leanpub.com/introducing_eventstorming
https://eventstorming.com/
https://twitter.com/mattwynne
https://twitter.com/tooky
https://cucumber.io/blog/bdd/example-mapping-introduction/
https://cucumber.io/blog/bdd/your-first-example-mapping-session/
https://twitter.com/kenny_baas
https://twitter.com/tpierrain
https://twitter.com/brunoboucard
https://leanpub.com/ddd_first_15_years
https://github.com/ddd-crew/eventstorming-glossary-cheat-sheet/tree/master
(https://www.dddheuristics.com/eventstorming/)
(https://www.dddheuristics.com/example-mapping/)

Combining tools 211

Why?

Tips

• Visualise and discover the complexity involved with technical debt
• Potential to visualise if technical debt items are linked
• Insights into the magnitude of the complexity of technical debt items, allowing the team to do

a proper prioritisation
• Use timebox to discover the complexity of technical debt items
• Pair or mob program to learn together

Traps

• Team that doesn’t timebox get lost into investigations of the complexity of the technical debt
items

Authors, attribution and citations

This article was written by João Rosa²³⁹. He is a Strategic Software Delivery Consultant at Xebia,
specialised into helping companies to leverage the power of technology to drive their business.

²³⁹https://twitter.com/joaoasrosa

https://twitter.com/joaoasrosa
https://twitter.com/joaoasrosa

	Table of Contents
	Introduction
	A word about teams
	Facilitation
	Campfires instead of meetings
	Facilitator as magician

	Prepare and hold a Visual Meeting
	Phase 1: Preparations for the session
	Phase 2: Lighting the campfire
	Phase 3 and 4: Visual collaboration towards the climax
	Phase 5: Wrapping-up and extinguishing the campfire
	Phase 6: Retrospective

	Tips and trick for working remote
	Six Trumps: The Brain Science That Makes Training Stick

	Visual Collaboration Tools
	Assumptions Mapping
	Bounded Context Canvas
	Business Capability Modelling
	Business Model Canvas
	Context Mapping
	Decision Log
	Domain Quiz
	Domain Storytelling
	EventStorming
	Example Mapping
	Impact Mapping
	Independent Service Heuristics
	Interactions Mapping
	Mikado Method
	Quality Storming
	Responsibility Mapping
	User Needs Mapping
	User Story Mapping
	The Wall of Technical Debt
	Wardley Maps

	Field Stories for a tool
	An Impact Mapping Workshop to Make Out The Right Decision Between Hundred Possibilities
	Improving your Organizational Continuous Delivery capabilities with EventStorming
	Gathering quality feedback at #play14 with EventStorming
	Building an Event Driven Data Capture Platform
	Understanding Requirements With Domain Storytelling

	Combining tools
	Domain Storytelling and EventStorming
	EventStorming and Example Mapping
	Wall of Technical Debt and Mikado Method

